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INTRODUCTION

Microseisms are the most ubiquitous continuous seismic signals 
on Earth at periods between approximately 5 and 25 s (Peterson 
1993; Kedar and Webb 2005). They arise from atmospheric 
energy converted to (primarily) Rayleigh waves via the inter-
mediary of wind-driven oceanic swell and occupy a period band 
that is uninfluenced by common anthropogenic and wind-cou-
pled noise processes on land (Wilson et al. 2002; de la Torre et 
al. 2005). “Primary” microseisms (near 8-s period) are gener-
ated in shallow water by breaking waves near the shore and/or 
the nonlinear interaction of the ocean wave pressure signal with 
the sloping sea floor (Hasselmann 1963). Secondary micro-
seisms occur at half of the primary period and are especially 
strongly radiated in source regions where opposing wave com-
ponents interfere (Longuett-Higgins 1950; Tanimoto 2007), 
which principally occurs due to the interaction of incident swell 
and reflected/scattered wave energy from coasts (Bromirski 
and Duennebier 2002; Bromirski, Duennebier, and Stephen 
2005). Coastal regions having a narrow shelf with irregular and 
rocky coastlines are known to be especially efficient at radiating 
secondary microseisms (Bromirski, Duennebier, and Stephen 
2005; Shulte-Pelkum et al. 2004). The secondary microseism 
is globally dominant, and its amplitudes proportional to the 
square of the standing wave height (Longuett-Higgins 1950), 
which amplifies its sensitivity to large swell events (Astiz and 
Creager 1994; Webb 2006).

Microseisms have long been recognized as an indicator of 
large-storm intensity (Gilmore 1946; Gutenberg 1947; Gilmore 
and Hubert 1948). However, contributions from deep-water 
open-ocean storms are not generally significant in records from 
land-based seismometers (Bromirski and Duennebier 2002; 
Haubrich and McCamy 1969). Rather, microseism levels pre-
dominantly measure spatially distributed wave activity associ-
ated with wave interactions along coasts. The efficient propaga-

tion and ubiquity of short-period microseism Rayleigh waves 
(Bromirski, Duennebier, and Stephen 2005; Schulte-Pelkum et 
al. 2004; Bromirski 2001; Stehly et al. 2006), has also recently 
spurred their use in tomography (e.g., Sabra et al. 2005; Shapiro 
et al. 2005).

DATA ANALYSIS

To examine global variability in microseism power at time 
scales ranging from days to decades, we utilize 1 sample/s con-
tinuous velocity time series from the Global Seismographic 
Network (GSN; figure 1; Butler et al. 2004) and its predecessor 
networks, the Seismic Research Observatory (SR; 1974–1993) 
and the High-Gain, Long-Period Network (HG; 1972–79). 
All data are vertical-component records retrieved from the 
Incorporated Research Institutions for Seismology (IRIS) 
Data Management System and/or from the U.S. Geological 
Survey (USGS) Albuquerque Seismological Laboratory (ASL). 
Deconvolving the instrument responses from the raw spectra 
provides calibrated globally distributed seismic records at peri-
ods greater than several seconds extending back as far as the 
early 1970s. The shorter-period part of the secondary micro-
seism period band was excluded by analog filtering of some of 
the earlier (SR and HG) data. However, data available from the 
modern GSN collected since the late 1980s include the com-
plete microseism at periods longer than approximately 3 s.

Microseism history is characterized using power spectral 
densities (PSDs). Specifically, PSDs for 1.5-hour 50% overlap-
ping data segments are gathered to construct empirical prob-
ability density functions (PDFs) that statistically characterize 
longer time periods (McNamara and Buland 2004; figure 2). 
Earthquakes, of course, commonly generate high-amplitude 
surface waves in the period band that exceed microseismic 
background PSD levels by 60 dB or more. These transients are, 
however, very effectively suppressed in this analysis because they 
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decay below microseism levels on time scales of hours, even for 
the largest events (Park et al. 2005), and thus affect a very small 
percentage of data segments.

Deep-water ocean swell propagates with group velocity 
U = gT/(2π), where T is the wave period in seconds and g is 
the acceleration of gravity, so that characteristic 16-s swell will 
propagate at approximately 12.5 m/s and has long been known 
to commonly transit ocean basin–scale distances (e.g., Munk 
et al. 1963; MacAyeal et al. 2006). To process seismic excita-
tion arising from large swell events into seasonal-scale metrics, 
microseism levels were examined using median PSDs across 
50% overlapping 36.525-day (deciyear) intervals for a global 
distribution of 11 long-running GSN stations (figures 1, 2, 
and 3A). To examine temporal evolution of microseism power, 
median PSD PDFs are integrated across the secondary (which 
is overwhelmingly dominant; figure 2) component of micro-
seisms between 5.62 and 12.6 s period (figure 3B).

Regional associations between the secondary microseism 
power time series of figure 3B are revealed by correlation-
based similarity analysis (Rowe et al. 2002; Sneath and Sokal 
1973) (figure 4) across the common 12-year interval of 1 June 
1994–1 July 2006. Microseism power in both the northern 
and southern hemispheres shows very strong (~ 20 dB at many 
stations) interannual variability driven by especially energetic 

swell occurring during respective winters. The annual periodic 
component of the power time series is characterized by fitting 
annual Fourier series coefficients to the 12-year common time 
series for the stations of figure 3 between 1 June 1994 and 31 
May 2006 (figure 4).

DISCUSSION

Microseism power series correlate strongly with continent-
scale station distribution (figure 4). Western U.S. stations (KIP, 
TUC, and ANMO) show a primarily Pacific association, and 
U.S. East Coast and northern European stations (ESK, HRV, 
and KONO) have relatively minor Atlantic associations. Deep 
Antarctic stations (SBA, SPA/QSPA) show strong associa-
tion with each other, but are only weakly correlated with other 
coastal southern hemisphere stations (PMSA and NWAO). 
This degree of regionalization is comparable to that observed 
in studies utilizing meteorological buoy measurement of swell 
amplitude (Bromirski, Cayan, and Flick 2005). Both northern 
and southern hemisphere temperate latitude stations demon-
strate especially strong annual periodicity, with annual power 
peaks that are within 10° in phase of their respective wave-year 
peaks, which are in turn within a few weeks of their respective 
winter solstices (using the reference date Jan. 1 to ascribe the 
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Figure 1. ▲  Global Seismographic Network (Butler et al. 2004), as of 2007, with stations referred to here highlighted and geographi-
cally categorized. GSN affiliated stations are shown as purple symbols. Stations noted are: Oahu, Hawaii (KIP), Piñon Flat, southern 
California (PFO), Tucson, Arizona (TUC), Albuquerque, New Mexico (ANMO), Harvard, Massachusetts (HRV), Eskdalemuir, Scotland (ESK), 
Kongsberg, Norway (KONO), Narrogin, southwest Australia (NWAO), Palmer Station, Antarctica (PMSA), Scott Base, Antarctica (SBA), 
and South Pole (QSPA).
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phases of the periodic microseism components in figure 4). 
PMSA, on the Antarctic Peninsula, also shows an apparent 
wave-year related annual phase, but the annual periodicity is 
very low (a periodic fit variance reduction of only V = 11%). 
We attribute the notably aperiodic PMSA microseism to the 
strong influence of local storms in the tempestuous Antarctic 
Peninsula region throughout the year. Deep Antarctic stations 
(SBA and QSPA) show strong annual periodicity (V > 70%) 
but have annual microseism peak phases relative to Jan. 1 of 83° 
and 92°, respectively, which we suspect are attributable to unde-
termined processes associated with seasonal sea ice.

Microseism power time series show significant interan-
nual variability in both the primary and secondary period 

bands, with aperiodic components accounting for between 
89% (PMSA) to 25% (KIP) of the total signal energy (figure 
4). Near-coastal stations (e.g., PFO, KIP, NWAO, ESK, HRV, 
PMSA, TUC) exhibit short-term aperiodic power variations 
that reflect greater local sensitivity to specific storms. The mid-
Pacific oceanic island site KIP exhibits exceptionally high micro-
seism levels and the most periodically predictable signal over 
this observational interval (V = 75%; figure 4), indicating that 
the long coastline of the Hawaiian Islands provides exceptional 
integrative coupling of Pacific wave activity into microseismic 
energy. The northern Pacific/western United States power 
series affinity (figure 4) of KIP indicates that this energy pri-
marily originates from northern Pacific winter storms. During 

Figure 2. ▲  Background seismic spectrum at Albuquerque, New Mexico (approximately 1,200 km from the California Pacific coast) for 
a 20-year period (1 June 1986 through 31 May 2006) characterized by a power spectral density (PSD) probability density function (PDF) 
using the method of McNamara and Buland (2004). The globally characteristic peaks near 8 and 16 s are the secondary (predominant) and 
primary microseisms, respectively. Median (solid) and mode (dashed) PDF curves are indicated, and dashed bounding curves show the 
globally estimated Global Seismographic Network low- and high-noise models (LNM; HNM; Peterson 1993). We compute power spectral 
density (PSD) using the algorithm used to develop the GSN LNM. This figure is constructed using 88,865 1.5-hr, continuous, and overlapping 
(50%) 1 sample/s time series segments. All data are included; there is no removal of earthquakes, system transients, and/or data glitches. 
The instrument transfer function is removed from each segment, yielding ground acceleration for easy comparison to the LNM. Each 
1.5-hour-long time series segment is divided into 13 subsegments, overlapping by 75%. Each subsegment is processed by: 1) removing the 
mean, 2) removing the long period trend, 3) tapering using a 10% sine function, 4) applying the Fourier transform, 5) constructing a PSD esti-
mate for the segment via Welch’s method (e.g., Oppenheim and Schafer 1975). The PDF for the entire period is then constructed by gath-
ering PSDs in the following manner: 1) binning periods in 1/8 octave intervals, 2) binning power in 1 dB intervals. Each period-power bin 
is subsequently normalized by the number of contributing segments to construct an empirical PDF. The density function displays ~ 20 dB 
of microseism power variability driven by midsummer wave minima and midwinter wave maxima, primarily in the northern Pacific Ocean.
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Figure 3. ▲  (A) Velocity PSD PDF medians (figure 2) as a function of year (Jan. 1) and period, T, calculated using 50% overlapping deciyear 
(36.525-day) time series, and arranged by global locale (figure 1). Solid blue swaths signify station downtime, and red, short-period blocks 
in the oldest data from NWAO, ANMO, and KONO are due to irreversible early short-period microseismic filtering. (B) Velocity power levels 
in the predominant secondary (figure 2) microseism band obtained from integrating median PSD values (figure 3) between 5.62 and 12.6 
s period in 50% overlapping deciyear time windows, displaying long-term annual and other power trends. Power is physically equivalent 
to that imparted to a 2 kg mass by vertical ground motion. Note that power axis scales are four times greater at Kipapa (Oahu) Hawaii 
(KIP) and ten times greater for Palmer Station, Antarctica (PMSA) and Eskdalemuir, Scotland (ESK), which experience exceptionally high 
microseism levels typical of oceanic islands (Peterson 1993).
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Figure 4. ▲  Annual phase (relative to 1 January; top) and periodic fit (bottom) for secondary microseism power series (figure 3B) using 
five Fourier terms for June 1994 through June 2006. Microseism power level time series predictability via annual fundamental and har-
monic terms is expressed as the variance reduction, V = (||d||2 – ||d – dpred||

2)/||d||2, where d is the data and dpred is the prediction using 
the fundamental and its first four harmonics (fitting higher harmonics gave no further improvement). The phase of annual cycle relative 
to the beginning of the calendar year is parameterized by the phase of the fundamental (1-year) Fourier term. Inset: Regional secondary 
microseism affinities characterized using correlation-based classification of demeaned and standard-deviation-normalized power time 
series (figure 3B; June 1994–June 2006). Dendrogram construction utilized the group average (unweighted average distance) hierarchi-
cal method (Sneath and Sokal 1973) using the demeaned power time series and a dissimilarity measure of 1 – c, where c is the zero-lag 
cross-correlation coefficient. 
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strong El Niño/La Niña episodes, such storms are intensified in 
frequency and size (particularly in the Gulf of Alaska) and gen-
erate exceptionally large swell in Hawaii and along the western 
coast of North America (Bromirski, Duennebier, and Stephen 
2005; Allan and Komar 2002). The multiyear peaks in micro-
seism energy in 1997–98 and 2002–04 at KIP, ANMO, PFO, 
and TUC correlate with increased northeast Pacific storminess 
during El Niño Southern Oscillation (ENSO) cycles (Hoerling 
and Komar 2002; McPhaden et al. 2006) during these periods. 
The largest energies for these northern Pacific stations occur 
during the 1997–98 El Niño northern hemisphere wave year, 
in general agreement with studies of wave heights in the eastern 
northern Pacific measured by NOAA buoys (Bromirski, Cayan, 
and Flick 2005).

The longest continuously running seismic stations present 
the possibility of examining microseism variations in the mul-
tidecade range at time resolutions as fine as the three–five-day 
synoptic swell variability from individual storms (Bromirski, 
Flick, and Graham 1999). Figure 5 shows such microseism 
power levels for ANMO from 1 January 1978 through 31 May 
2006 using 4.56-day (1/80 of a year) 50% overlapping median 
PSD PDF windows. Earlier instrumentation prevents analysis 
of the shorter-period microseism at this station; however, the 
10–20-s period band is resolved and allows for analysis across a 
28.5-year interval at these longer periods, which is dominated by 
secondary microseism signals arising from exceptionally high-
wind and large-fetch northern Pacific winter storms. ANMO 
microseism power levels generally co-vary with wave heights 
along the southern California coast, as measured at a NOAA 
buoy near Point Arguello, (figures 5C and 5D; we raise the 
measured wave heights to the fourth power because the seabed 
forcing by the secondary microseism mechanism is predicted to 
be proportional to the square of wave height [Longuett-Higgins 
1950] and because we are comparing the buoy-estimated wave 
measurements to microseism power, which is, in turn, propor-
tional to the square of the source forces), with the annualized 
wave and microseism power shown in figures 5D and 5E. Both 
seismic and buoy time series show notably high amplitudes dur-
ing the 1983 El Niño and the 1997–99 ENSO, with the 1983 
episode being relatively transient in its microseism and wave 
influence because of the lack of subsequent strong La Niña. 
During these exceptional years, both microseism energy and the 
annualized wave forcing are larger than median years by a factor 
of two to three. In contrast, the more modest 1988–89 ENSO 
exhibits lower levels of both wave and microseismic energy 
(60–80% of the other observed ENSO cycles).

Microseism and buoy time series during the 1997–2000 
period, which includes a very prominent ENSO cycle, are 
shown in figure 6. The maximum of the correlation function, 
C, between the 2.28-day demeaned seismic and buoy mea-
surements across the 22-year common data interval (northern 
hemisphere wave years 1982 through 2004) is 0.62 (figure 6) 
with the interpolated maximum occurring essentially at zero 
lag (the wave record lags the microseism record by 0.5 ± 1.2 d 
at the 95% points of the cross-correlation peak). The annual 
side lobes of the cross-correlation function, corresponding to 

misaligned years, have maxima of C < 0.2. This degree of cor-
relation, despite the substantial distance between the coast and 
the inland continental seismometer site (1,280 km), reflects the 
integrative sensitivity of ANMO to microseism sources along 
the Pacific coast of North America (figure 4), including more 
northerly Pacific storms that produce relatively low-amplitude 
waves along the southern California coast (Allan and Komar 
2002). Peaks in the two time series correlate strongly in time 
with effectively zero lag, but show variable amplitude ratios (by 
a factor of two or more for strong storms; figure 6) that are indic-
ative of secondary microseism generation conditions associated 
with specific swell episodes sensed by the (point measurements 
of the) ocean buoys. This variability between specific events is 
likely to arise from several factors including the angle of swell 
propagation with respect to the coast, the associated length of 
coastline nearly simultaneously illuminated by a swell event 
(reflective of the spatial continuity of the incident swell), and 
the coastal morphology determining the combined reflected/
scattered swell directional spectrum (Bromirski and Dunnebier 
2002; Bromirski 2001).

Microseism analysis at long-running seismic observatories 
produces quantitative wave intensity metrics with spatiotem-
poral wave integrating characteristics that complement more 
localized (e.g., buoy-based) measurements. The degree to which 
microseisms at specific stations are sensitive to local versus 
regional-scale swell is dependent on geography. This work indi-
cates that the greatest degree of integration will occur for either 
of two end-member geographic scenarios. The first scenario is 
at oceanic islands, which have broad exposure to swell propa-
gating from multiple source regions, and where microseisms are 
generated at regional to local distances from the station (e.g., 
Hawaii). The second scenario is at interior continental sites that 
are sensitive to multiple near-coastal microseism source zones 
that radiate Rayleigh waves over regional to teleseismic dis-
tances (e.g., stations in interior North America or Antarctica). 
Although continental interior sites have much lower micro-
seism energies than oceanic island and near-coastal stations 
(e.g., the annualized energies at ANMO are approximately 
200 times lower than at KIP; figure 3B), microseisms are eas-
ily resolvable even at these quietest sites (Peterson 1993; Butler 
et al. 2004). Microseism metrics present novel constraints on 
sea roughness and climate in especially remote areas, such as 
Antarctica, where other data are rare or absent, and potentially 
offer the longest-running instrumental records of wave climate. 
Enhanced efforts to digitize analog records from the longest 
established seismological observatories offer the possibility of 
establishing microseism wave climate metrics back to the mid-
20th century (Grevemeyer et al. 2000), and perhaps earlier, and 
present a unique opportunity for quantitatively characterizing 
regional and global storm behavior and energies at the centen-
nial time scale. Because of the sensitivity of microseisms to large 
waves, further investigation is warranted to test predictions 
and corroborate other observables reflecting a possible climate 
change–induced increase in extreme storms (e.g., Knutson et al. 
1998; Meehl et al. 2000; Emanuel 2005; Bromirski et al. 2005; 
McNamara et al. 2007). 
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particularly during the strong El Niño of 1983 and the strong El Niño/La Niña cycle of 1997–99, which were associated with exceptionally 
strong Pacific storms and swell along the western coast of North America (Hasselmann 1963; Bromirski, Cayan, and Flick 2005; Allan and 
Komar 2002; McPhaden et al. 2006).
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