# ROVDOG Interface Board, Version 3 Design notes from Mike & Glenn

This board mounts on top of the BL1700 board using SamTec mezzanine headers at H6 - H11

## Design:

4 layers, internal power plane, internal ground plane:

Top-Red (Signal) | Inner Common-Green (split) | Inner Power-Brown (split) | Bottom-Blue (Signal) Both the power & ground planes are split to allow for digital, analog & power (motor) sections The split sections are tied together with a jumper on the top layer near the power connector

#### **Board Size:**

Same except a 1" extension on one long side for the ROV RS232 optical isolation circuit

# Stack height w/ BL1700 on bottom:

| 0.420" | J1 RA header or Ribbon cable IDC to vertical header; | 0.230" for JPARO or JCOMP         |
|--------|------------------------------------------------------|-----------------------------------|
| 0.100" | IDC header base                                      |                                   |
| 0.063" | ROVDOG interface pc board                            |                                   |
| 0.745" | SamTec #: ESQ-105-69-G-D                             |                                   |
| 0.100" | IDC header base                                      |                                   |
| 0.063" | BL1700 pc board                                      |                                   |
| 0.125" | nylon spacer                                         |                                   |
|        | aluminum base plate                                  |                                   |
| 1.615" | Overall Stack Height;                                | 1.425" overall for JPARO or JCOMP |

Per Glenn: 1.765" available within a 7.75" diameter circle

As measured from 1 actual base plate with the aluminum splash shield: 1.735" height available with a 7.375" diameter circle This drops to 1.315" available for an addition 0.5" outside above circle

Existing pc board is 4.215" x 6.250" : 7.54" diameter

## \*\*\* Tight, move J1 towards board center line

## **Connectors:**

Same as before, mostly

Per Glenn, USB has never been used, so that could just be a 4 pin header to save room.

Also, the 2 1x3 JTx connectors could just be a single 2x3

which will save some board edge real estate in both cases

## **Components:**

+5 VDC voltage regulators, 3 required

LT1121 5V, 150 mA SOT-223 SM footprint, input voltage range 5.5 - 20VDC, +/-30 V max 3 used; 1 main board, 2 optical isolation

-5 VDC voltage regulators used for both optical isolation & analog circuits 3 used; 1 main board, 2 optical isolation

MAX860 replaces the older LT1044

Motor controller Dropping diodes

# Design notes from Glenn: Interface board, rev 3

#### **Issues**

- 2005 interface board has been modified with trace cuts and jumper wires to isolate ground planes and add overvoltage protection and other features.
- No unmodified boards or unstuffed boards are left.

#### Goal

Design and fabricate a board to incorporate new changes and repair old problems.

## **Design limits**

- Space: Form factor limited to existing rovdog electronics package volume, maximum 8" dia. x 1" high (**VERIFY DIMENSIONS**).
- IC packages: SMT ok.
- Baseline design: 2005 board with 2007 changes
- BL1700 and existing code still in use

## **Changes:**

- Ground isolation, with jumper points to connect grounds
- Op-amp buffers for all off-board analog inputs
- Dedicated connector for heading compass
- Incorporate RS232 opto-isolation on board
- Incorporate battery backup switching as well?
  - mrk: no
- Mezzanine sockets to plug directly into BL1700; reduces number of jumpers
  - yes for H6 H11
  - still short ribbon cables for H12 H15

#### Additional documentation:

BL1700 physical layout schematic Rovdog interface board rev 2.10 (DWG 1024) BL1700 board interface board

## More notes from Glenn:

5 V supply demand:

16 x 10K pullup resistors = 8 mA max (all pulled to ground worst case)

MPX4115 barometer = 10 mA

Compass = 35 mA (wow)

74LS14 inverter = 0.5 mA (drives ttl inputs,  $4 \times 0.1 \text{ mA max}$ )

LM35 temp sensors, 3 ea,

driving 5 V into 5K = 3 mA (max)

LT1044 quiescent = 0.020

Total: 57 mA

mrk: more +5 V draw from the motor driver 36 mA max (unlikely?)

## Need +5 V, 93 mA worst case

\_\_\_\_\_\_

LM35

LM35 output is 10m V/Deg C and are input into a  $\pm$  0.5 V A/D channel. Since I already set it for negative input, might as well always bias the LM35 channels to read negative temperatures. AD are 12 bit so one bit = 0.24mV or 0.024 C. LM35 probably not that precise.

-----

Dissipation on motor driver.

IC supply voltage: 10.33 V (12V dropped through 2 diodes).

Motor current: 0.2A max Motor voltage drop: 9.61 V

IC dissipation:  $0.2A \times 0.7V = 0.14 \text{ W}$ 

Sound about right?

Driver IC runs pass transistors in full saturation. Also, driver IC duty cycle is very low. (<1 %).

So heat sinking isn't a huge problem, some heavy copper should do.