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We introduce a new ocean circulation model featuring an im-
proved vertical coordinate representation. This new coordinate is
a generalized o-coordinate; however, itis capable of simultaneously
maintaining high resolution in the surface layer as well as dealing
with steep and/or tall topography. The model equations are the
three-dimensional, free surface, primitive equations with orthogo-
nal curvilinear coordinates in the horizontal and the new general
coordinate in the vertical. Vertical mixing is treated implicitly by
the generalized Crank-Nicolson method based on a Galerkin finite
element formulation. Two alternate parameterizations of surface
mixing are incorporated, based respectively on the approaches of
Price, Weller, and Pinkel and Mellor and Yamacda. Finally, a quadra-
ture formula of Lagrange interpolation is employed to produce a
more accurate calculation of pressure and vertical velocity. Three
tests are used to demonstrate the accuracy, stability, and applicabil-
ity of the model: the diurnal cycling of the surface mixed layer, flow
around a tall seamount, and a regional simulation of the California
current system. © 1994 Academic Press, Inc.

1. INTRODUCTION

Successfully meeting the challenge of coupling atmosphere
and ocean models greatly depends on the proper representation
of surface mixing in the ocean, which in turn requires an appro-
priate vertical representation of the surface ocean structure
where wind and thermal forcing, and vertical turbulent mixing
strongly dominate the dynamics. A further, and sometimes
competing, requirement is the accurate incorporation of the
influences of complex topography and ocean basin geometry.
The coastal ocean represents perhaps the most complex model-
ing chalienge, intimately connected as it is to both the deep
ocean and the atmosphere, and including strong alongshore
and offshore topographic variations. Due to the wide range of
conditions present. many frequently employed approximations
and simplifications are not applicable 4.

In order to improve the representation ol topographic varia-
tions, some numerical circulation models use the ag-coordinate
system, {irst introduced by Phillips [22]. The o-coordinate is
a linear function of £ which maps the varying topography into
a regular domain and greatly simplifies the numerical computa-
tions. However, as we show more clearly below, this linear
mapping is not consistent with uniformly high resolution at the

ocean surface, More recently, vertical stretching [20, 12] and
embedding techniques | 1] have been used to remedy this prob-
lem, but additional difficulties, such as inefficiency and coordi-
nzie discontinuity, remain. In this paper, we propose a new
general vertical coordinate ¢hereinafter called an s-coordinate),
a nonlinear function of z which allows high resolution in the
upper ocean while maintaining the bathymetry—following
properties of the o-coordinate.

It is known that the mapping of an irregular physical domain
(o a regular computational domain by introducing metric coef-
licients into the differential operators of the governing equations
is advantageous. For some simple geometries, e.g., polar coordi-
nates, these metric coefficients can be calculated analytically.
Following Haidvogel er al. [12], we employ a nonuniform
curvilinear coordinate system which can enhance resolution
in specific regions to handle horizontal turbulent mixing and.
irregular lateral boundaries. A software package is available to
generate the orthogonal curvilinear grid system (see Wilkin
and Hedstriém [29]).

In many applications of interest, such as tidal and storm-
surge problems 6], the rigid lid assumption is inappropriate,
[n this model, we explicitly solve the depth-averaged equations
tor the free surface elevation and depth-averaged velocity field.
The depth-averaged equations are discretized on a staggered
Arakawa C-grid. A leapfrog prediction—trapezoidal correction
scheme s vsed for the time integration; this is slightly more
stable than a leapfrog-only scheme and strongly suppresses the
computational mode.

Since wind and thermal forcing and vertical turbulent mixing,
strongly dominate the surface layer of the ocean, a severe
restriction on the size of the allowable time step may result
if explicit time-stepping schemes are used. Because of these
difficulties, many mixed layer models are based on either one-
dimensional or bulk formutations, as reviewed by Henderson-
Scllers and Davics | 14]. To deal with the strong vertical turbu-
lent mixing, we use the generalized Crank—Nicolson method
to treat the vertical mixing dynamics implicitly. This method
has been proven stable even for strong vertical advection and
diffusion as shown by Lardner and Song [18]. A Galerkin finite
element formulation is used to achieve higher accuracy at less
cost for a large number of vertical levels,
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Finally, we explore two parameterizations of surface mixing
processes: dynamic instability mixing and turbulent closure
mixing. Dynamic instability mixing is based on the successful
one-dimensional diurnal cycling experiment of Price et al. [24].
The mode! also implements an energy budget form of an en-
trainment parametrization that is very similar to that described
by Price er al. [23]. The turbulent closure mixing is based on
a level-2 formulation in Mellor and Yamada [21]. The general
vertical coordinate system permits a higher resolution in the
surface mixed layer, and it enables use of either dynamic stabil-
ity mixing or energy budget mixing to track the depth of the
mixed layer and the transition layer due to surface heating—
cooling and wind stirring.

The paper is organized as follows. In Section 2, the primitive
equations and accompanying boundary conditions are formu-
lated in the general vertical coordinate system and in the hori-
zontal curvilinear coordinate. In Section 3, the numerical meth-
ods ysed to solve the depth-averaged equations and vertical
varying equations are described. Section 4 briefly describes the
implementation of the dynamic instability and turbulent closure
mixing algorithms. Numerical results are presented in Section
5 for test problems involving diurnal cycling of the surface
mixed layer, flow around a tall seamount, and the wind-driven
response of the California current system. Conclusions are sum-
marized in Section 6. Finally, Appendix A presents the finite
element formulation for the vertical flow structure. Appendix
B shows an analytically solvable advection and diffusion prob-
lem to test the finite element method. Appendix C describes a
quadrature integration technique for the accurate computation
of the pressure and vertical velocity.

2. MODEL FORMULATION

2.1. The Primitive Equations

We use xyz as Cartesian coordinates with the z-axis pointing
vertically upwards and the xy-plane occupying the undisturbed
water surface. The horizonial momentum equations can then
be written in the form

du ¢ ou

—+v-Vu—fo=—"F+— + D, + &, 2

Py u P az(KM z) 8. 2.1
and

ov a¢

—+v-Vo+fu=—]
ar == T o

(KM Z) + D, + FK.. (2.2)

The temperature and salinity equations can likewise be written

aT

v-VT = 5— (KH ) + D+ g'r (2.3)

and
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v-V§= (KH ) + D + s (2.4}

The equation of state and the approximated hydrostatic pres-
sure are

p=plS.T.P) (2.5)
and
3 _ g (2.6)
iz Pa
Finally, the continuity equation is
du  du | dw
—+—+——= 7
dx dy 0z @D

The equation of state (2.5) can take on different forms for
different applications. Generally, it follows the formulation of
the international equation of state of sea water [9]. For other
cases in which salinity is not explicitly considered, density is
a linear function of temperature.

The notation used in these equations is as follows:

u, U, w the x, v, z components of vector velocity v
Tx, v, 2.0 total temperature

SCx, v, 2,0 tatal salinity

oo + p(x. ¥y, z, ) total density

dlx, v,z b dynamic pressure (P/p)

P total pressure

f Coriolis parameter

g acceleration due to gravity
Kulx, v, 2, ) vertical eddy viscosity
Kylx, v, 2, 0 vertical eddy diffusivity

horizontal viscous and diffusive terms
forcing terms,

@us @u? g‘f& ®S
g‘uv %v’ B;Tv 35

where the vertical eddy coefficients will be discussed further

in Section 4. The horizontal viscous and diffusive terms ® can
be the harmonic foermulation,

_ du | &u
D, = Aun Viu= Ay {é? + 6}’2}

or the biharmonic formulation,

Q-

D, =~ Ay V'V

where Ay and Ay are horizontal viscosity coefficients,
Equations (2.1)—(2.7) are subject to boundary conditions on
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the sea surface and at the sea bed. The surface conditions,
evaluated at 7 = [, are

XM%E;- = (5, y. 0) 2.8)
KM% = 10 1) 2.9)
Kﬁg=Q;r/pUCp (2.10%
Ku2 = (e = pllpo @1

where 7 and 7} are the components of wind stress acting on
the free surface in the x and y directions, respectively; Oy is
the heat fluxes; ¢ and p are the evaporation and precipitation
rates, respectively; and C, is the heat capacity of sea water.
Correspondingly, at the sea bed, ; = —h, the boundary condi-
tions are

du
Ky —=1i(0y, 0

2.12
9z { )
au .
Ky—=1i(x, 3,8 (2.13)
a9z
HB_T: 0 (2.14)
az
KHa—S =0, (2.15)
0z

where 73 = (yy + v Vi +v) wand 7, = (y; + v
' +v*) v, and vy, and v, are coefficients of linear and qua-
dratic bottom friction, respectively.

2.2, General Vertical Coordinate

The most commonly used vertical coordinate system is the
z-coordinate, which naturally represents the physical domain
of the ocean as in Egs. (2.1)—(2.7). In numerical ocean mode!-
ing, the grid size in the vertical direction can be easily arranged
to allow the highest resolution near the surface and somewhat
less reselution below the thermocline. However, great difficulty
is encountered in representing varying topography, especially
near coastal boundaries where the ocean bottom rapidly varies
from shallow to deep water. In such cases, a z-coordinate will
approximate the bottom as a series of steps. This may lead 1o
difficulty in applying the botiom kinematic and stress boundary
conditions. Another difficulty is the treatment of horizontal
mixing of momentum, heat, and salinity; for example, Veronis
[28] has pointed out that horizontal mixing in regions of tilted
density surfaces can cause a strong spurious upwelling in nu-
merical models.

Another widely used vertical coordinate system is the
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a
500 m
b
¢
FIG. 1. Vertical computational levels for the California coastal shelf in

S-coordinate, left column for the full depth and right column for the wpper
S00m:{a) 8 = 00001, 6=0:(0) =8, b=0()f#=8.b=1

a-coordinate, This coordinate transforms the irregular physical
domain, bounded by free surface and varying bottom, to a fixed
regular computational domain. The advantage of this coordinate
is that 1t follows the bathymelry and greatly simplifies the
computation. A corresponding disadvantage is that it cannot
maintain equally high resolution near the surface layer indepen-
dent of local depth. For example, if a coastal region with a
minimum inshore depth of 80 m and a maximum offshore depth
of 4600 m is represented by a o-coordinate with 21 equally
spaced levels, the grid size is 4 m in shallow water, but 230 m
in the offshore region (see Fig. 1a). This kind of resolution is
not likely to represent surface mixing processes at all well in
the deep ocean.

General vertical coordinate systems have been considered
for a long time by meteorologists and oceanographers [20, 16];
however, there is no coordinate system in use which success-
fully permits uniformly high resolution near the surface like
the z-coordinate, yet preserves the bottom following character
of the o-coordinate. In this paper, we will introduce such a
general vertical coordinate (s-coordinate) system. Qur s-coordi-
nate consists of three terms:
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z={l++hs+h—-h)(s), —-1=s5=0,

(2.16)
where C(s} s a set of s-curves, defined by

sinh(8s)
sinh 8

tanh{&(s + 1/2)] — tanh((1/2) 8)

Cs)=(1 b 2 tanh((1/2) 6)

+b

where § and b are the surface and bottom control parameters.
Their ranges are 0 < # = 20 and 0 = b = 1, respectively. A,
is 2 constant chosen to be the minimum depth of the bathymetry
or a width of surface or hottom boundary layer in which a
higher resolution is required.

The first term in (2.16) is used to follow the free surface
{(x. y, ), the second is chosen to prevent possible linear instabil-
ity, and the third is designed to stretch the interior coordinate
lines and to follow the bottom A(x, y). There are three attractive
features of this s-coordinate system:

* Itis a generalized o-coordinate system. Letting 6 approach
zero, by L’Hopital's rule, the s-coordinate becomes the o-coor-
dinate

=L+ +s5)—h (217
Numerically, taking 8 < 1 is sufficient to recover the o-coordi-
nate system.

* It has a simple linear functional form of {(x, v, ) and
h(x, ¥), and z is an infintely differentiable function of 5. There-
fore, the formulation of primitive equations in the s-coordinate
is similar to that in the o-coordinate.

* With an equal grid size in 5, and by choosing the parameter
¢ appropriately, the highest resolution is achieved near the
surface layer, independently of the varying bottom topography.

Figure 1 shows the s-levels for a vertical section off the
California coastal region with a depth of about 80 m at the
coast and 4600 m in the interior ocean. Figure la is the full
depth and the upper 500 m layers of the region for 8 = 0.0001
and & = 0, corresponding to a traditional ¢ coordinate. Figure
1b shows the analogous situation for @ = 8 and b = 0, maintains
high resolution in the surface layer; and Fig. Ic for # = 8 and
b = 1, maintains high resolution in the surface and bottom
layers. From these plots we can see that, unlike the traditional
o-coordinate system, the s-coordinaie can be figured out to
maintain its resclution of both surface and bottom layers inde-
pendent of the local water column depth. It is convenient to
define

H, E%E = ({+ k) + (h — h)Chs), (2.18)

where C,(s) is the derivative of s-curve C(s), which can be
calculated analytically
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cosh{fs)

coth((1/2)6) 0
sinh 8

ChAsy=(1-b) 2cosh*{8(s + 1/2)]

2.3 Horizontal Curvilinear Coordinates

In many applications of interest (e.g., flow adjacent to a
coastal boundary), the fluid may be confined horizontally to an
irregular region. In such problems, a horizontal curvilinear
coordinate system which conforms to the irregular lateral
boundaries is advantageous. The most common application of
the curvilinear coordinate system in large-scale ocean modeling
is the spherical coordinates, where A, ¢, and z represent longi-
tude, iatitude, and depth, and «, v, and w the zonat, meridional,
and vertical components of velocity. In regional or coastal
ocean modeling, curvilinear coordinate systems may also be
chosen to follow the trregular lateral boundaries and to provide
a spatially variable density of coordinate surfaces. A software
package developed by Wilkin and Hedstrém [29] for the genera-
tion of such two-dimensional orthogonal grids has been used
here. Another advantage to this approach is that it can generate
non-uniform curvilinear coordinates with coarser grid spacing
over the deep ocean and a finer grid for the shallower coastal
region. Because the most severe time-step limitation is related
to the local depth of the ocean, this skillful arrangement of the
grid can greatly enlarge the time step as shown by Song and
Tang [26] in the case of the shallow water equations.

The requirement for a boundary-following coordinate system
and for a laterally variable grid resolution can both be met
{for suitably smooth domains) by introducing an appropriate
orthogonal coordinate transformation in the horizontal. Let the
new coordinates be £(x, y) and n(x, y), where the relationship
of horizontal arc length of the differential distance is given by

(ds), = (%) dn,

where m(£, 1) and n(€ ) are the scale factors which relate
the differential distances (A£, An) to the actual {physical)
arc lengths.

Under these horizontal curvilinear coordinate- system, the
primitive equations (2.1)-(2.7) in the s-coordinate can be writ-
ten, as shown by Arakawa and Lamb [2] and Kasahara [16],

i(if_) ; ;?_(Heﬂu) _i(_’ia_") L hy
ot \ mn a5\ mn os \Hymn os mn
_ af1 d 1 Hy
_(”ag(n) ”an(m>)H"” n

(222Gl ) -5 (%)
& po \3¢ AE\ n an\ m

(2.19)

(2.20)

2.21)




|
1
i

232
H,
+ (D, +
mn(’Du %H)
8 (H\ 9 (HeQu a( Ku av\ . f
ar<mn) as( mn ) as \Hymn as manu
_ foe {1y a1 H,
- {ogels) - ) -
()40 -5
an  p \o7 3N n an\ m
F D, )
mn
() 3255
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= + —(Dr+
66 ( n ) 3"7 ( " . (Dr+ Fp)
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fi n

(2.22)

6=% [ Hopts, 7. Py ds (2.25)

and

Hﬂ d Hgil d HQU d HQQ _
dt(mn) * 65( n ) - an( m ) + as( mn ) =0, (226

where §}, dz/3¢, and 8z/97 are defined by

Q—Hig{w—(l-l-s)—g*umg—;—v g;} (2.27)
=(1 + —+c on 228
ag =(1+3) FT; () f (2.28)
and
2 _a+ )—§+C() (2.29)

an
3. MODEL DISCRETIZATION

3.1 The External Model Equations

Equations (2.21)—(2.26) are solved separately for their exter-
nal mode representing the depth-averaged flow and the internal

o)~ o i)
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mode representing vertically varying component. The equations
for the vertical variations of momentum, and temperature and
salinity will be considered in the next section. The external
mode equations can be obtained by vertical integration of the
momenturn equations (2.21)—(2.22) and the continuity eguation
(2.26). Using the surface and bottom conditions (2.8)—(2.15),

we obtain
d fr 1 o {1
E(E) {mn 5{(")_“ aﬂ(_)}D
-2 ()] (2 (2m)
0
+ L (2EN L DD ¢ -
J
a_(‘)}")
2B
an @ \9n

+-= @WH+£®A&Hiw%ﬂ)
an\ m mn mn

(3.1

=

(3.2)

and

(3.3)

9 d (Du d (Duy
é?(m‘n)*af( )* n( )=o

where D = { + h(x, y) and the overbar stands for the depth-
averaged integral which for a generic variable A is

= [
A= Hoads

The depth-averaged equations are discretized on a staggered
Arakawa C-grid. The semidiscrete form of the equations is

£(2) (2 v t) - (2o
b 8o o L _ Duz
fus 2] -[a(2F) oo

s, (D)} 2T
n mn

1
Lt o
mn



S-COORDINATE OCEAN CIRCULATION MODEL

.ﬁ{-fﬁ_h + (i)"ﬁ)naf(l) —_ (ﬁ)n 5]1 (_1_)} D
nmn n m
-D {5@ + 3—"(5,,@} - {5§ (@) (3.5)
m & n
+ s, (D””)} + 2@
m mh

1
t—Ar! =7
mn

and

(3.6)

where

A8 A)y = A, — Aiming
(5,A); = Ao — Aijmin
(E'E)U = (A + Acin )2

(A, = (A9,

A leapfrog-trapezoidal scheme is used for the time integra-
tion: this is slightly more stable than the leapfrog itself and
strongly suppresses the computational mode. It should be
pointed out that the depth-averaged equations are not indepen-
dent of the vertically varying equations; they are coupled
through the nonlinear and pressure gradient terms. In order to
solve the coupled external and internal modes efficiently, a
short time step s used for solving the external mode equations
in order to satisfy the CFL condition arising from the fast
moving gravity waves. An implicit long time step (about 20
times longer than the short one) is used to obtain the internal
mede as shown in the next subsection. This splitting technique
has been widely used, e.g., by Arakawa and Lamb [2) and
Lardner and Smoczynski [17], in many three-dimensional tidal
and coastal circulation models.

In Eqs. (3.5)-(3.6), uu, v, and 00 are evaluated from the
internal mode. In the fast time steps, they are replaced by
uy, ut, and 0U, respectively, and the differences wu, — uwu, uv
— vy, and D0 — DU are only updated at the long time step.
The pressure gradient terms are treated similarly.

3.2, The Internal Mode Equations

The internal mode equations consist of the momentum equa-
tions (2.21)-(2.22) and temperatare and salinity equations
(2.23)—(2.24). For simplicity, we can write a y-equation and a
temperature equation as
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aHu G(QHGM) 3 (KM du

_— _ ] —— = .
ar s as\Hyas) G

IHT  QUH,T) a Ky 8T)

ey = 3.
dt ds H@ os mnRy, (38)

where R, and R; are
N O SN S SR
R“#{mn+”a§(n> "o ( >}H"”
el () A )
n 9 po 9\ n
*i(Hﬂuu)
dn\ m
HouT Hy,uT)
af( ) an( m )+_®T“‘T)

The v-equation and salinity equation can be written in the similar
forms. The internal mode equations are solved by a semi-implicit
hybrid finite element/finite difference method. In detail, the ver-
tical direction is discretized by a Galerkin finite element formula-
tion, which is described in Appendix A. The right-hand-side
terms are discretized on the staggered C-grid. The semi-implicit
time discretization is shown in the next subsection.

("-'u + %‘Jl’)

Ry=—

3.3. Time Discretization

We shall use the implicit generalized Crank-Nicolson
scheme in s and the third-order Adams—Bashforth scheme [7]
for the horizontal directions. We use U/ as the generic variable
for Egs. (3.7)-(3.8) and introduce

U= AU+ (1 — U (3.9)

where A is an implicitness parameter, and approximate Eq.
(3.7) and boundary conditions (2.8)—(2.13) as

HU™ — HU*  s(QH,0 J -
] < [4 + ( asﬂ ) — i (g. %—) = mnRU (310)
(i
ag aS

where 7, and 7, are the surface and bottom boundary conditions
{2.8)—(2.13). K stands for the corresponding vertical eddy coef-
ficient. On the right side, R, only involves horizontal derivatives
and is evaluated explicitly, based on the third-order Adams-
Bashforth scheme by

Ry=&Q3R" — 16R™ + 5R™7). (3.12)

Treating 7 as the new unknown, we can rewrite Eq. (3.10) as
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4

A a5 as

HU | AOQHU) _i(ﬁa_{{) _HU 313)

= + mnRy,.
H, ds AA; R

Once U is solved, U”*' can be updated through Eq. (3.9).
This treatment of time discretization has several advantages
over the traditional leapfrog scheme. The implicit treatment
of the vertical direction removes the severe CFL restriction
which arises from the very thin vertical grid size near the
surface, so that a longer time step can be used. Usually,
when the surface turbulent mixing is considered, a higher
vertical resolution is necessary to achieve a desired accuracy.
In the traditional three-level leapfrog scheme, the diffusion
terms have to be weated by an Euler method to avoid
unconditional instability, thereby reducing the accuracy to first
order. Here, the Adams—Bashforth can achieve third-order
accuracy for all right-hand-side terms and reduce the time-
splitting oscillation usually associated with the leapfrog
scheme.

4. MODEL PARAMETERIZATION

An important and unresolved issue in ocean circulation mod-
eling is the appropriate parameterization of subgridscale pro-
cesses. One of the purposes of the s-coordinate is to achieve a
uniformiy high resolution in the surface layer so that mixing
parameterizations (whatever they may be) can be accurately
applied. Here, we consider two accepted parameterization ap-
proaches.

4.1, Turbulence Closure Mixing

In this submodel, a Mellor—Yamada level-2 scheme [21] is
used to parameterize the vertical eddy viscosity and eddy diffu-
sion coefficients as

KH = quH! (4.2)

where ¢*/2 is the turbulent kinetic energy, ! is the turbulent

length scale, and 5, and §;; are functions of Richardson number
R, and satisfy the steady state turbulent kinetic energy (TKE)

equation
au\' | fovy gdp  q°
Sl (2] +{Z=) | +8,88 =2
“[(az) (az)] "poz B

In this equation, B, is a constant equal to 15 and the length scale
! is estimated from the Blackadar boundary layer formation,

(4.3)

1

{= YJ::, |z| g dz [J‘iiquzji ,

where v = (.2 is a length scale factor. In our model, the TKE
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equation is solved by a simple diagnostic method of Galperin
et al. [8].

4.2. Dynamic Instability Mixing

Upper ocean density profiles often show a neutrally stable
surface layer, or mixed layer which is capped below by a
stable stratified layer, the diurnal or seasonal thermocline. The
neutrally stable mixed layer is easily stirred by a surface stress
or destabilizing surface buoyancy flux, and air~sea exchanges
are rapidly distributed through the mixed layer. In this model,
we employ the dynamic instability mixing approach to apply
the atmospheric forcing and to trap the depth of the mixed
layer. This approach is the hybrid mixed layer formulation of
Price er al. [24] which assumes that the upper ocean density
and velocity will be mixed vertically to satisfy the following
three stability criteria:

(i) static stability:

2y, (4.4)
dz

Static instability is generally caused by surface cooling, such
a In auturnn and winter of the seasonal cycle, and in the evening
of the diurnal cycle. This mixing process simulates free convec-
tion, which occurs whenever there is heat loss from the sea
surface, and is a major process responsible for the deepening
of the mixed layer. In our model, the instability is removed by
mixing the unstable layer with the layers below as necessary
to restore a stably stratified new state.

(ii) mixed layer stability:

—gAph,

R, = oA+ o) = 0.65, (4.5)
where h,, is the mixed layer depth and A takes the difference
between the mixed layer and the level just beneath it. R is the
bulk Richardson number. The second process simulates mixed-
layer entrainment and further deepens the mixed layer by relax-
ation of an overall Richardson number. Price et al. [24] show
that reducing R, to a value less than 1 gives significant vertical
mixing, which in practice occurs where the mixed layer current
is strongly accelerated by the wind stress.

(iii) shear flow stability:

—80p/dz

R = = 0.25, 4-6
£ pofiansazy? + (dutiz)} (“.6)

where R, is the gradient Richardson number. Rather than

deepening the mixed layer like the previous two processes,

this mixing process is to stir or smear out the sharp corners

within the transition layer. The shear flow stability criterion
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FIG. 2. Time series of (a) surface heat flux, (b} wind stress, (c) observed temperature profiles, (d) computed temperature profiles by Price et al., (e}

computed results from the present model.

produces significant mixing in a transition mixed layer when
there is significant vertical shear at the base of the mixed layer.

5. MODEL PERFORMANCE

In this section, we choose three widely different problems
to demonstrate the capabilities and numerical properties of the
model: the diurnal cycling of the surface mixed layer, a tall

seamount in a resting ocean, and finally, a simulation of wind-
driven California coastal currents.

5.1. Diurnal Cycle

A divurnal thermal cycle is well known to occur in the upper
ocean whenever the solar heating at midday exceeds the heat
loss from the ocean surface. When wind stress effects are con-
sidered, more complex surface mixing processes can occur.
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TABLE Iz

Values of the Parameters Used in the Diumal Cycling Problem

Symbol Value Definition
N 32 Vertical levels
h. 100 m Parameter in s-coordinate
8 4 Parameter in s-coordinate
H 1000 m Water depth
7 4 — 2 X e"® Background density stratification
Ky 1 x 10 Vertical viscosity coefficient
Ky 0 Vertical diffusivity coefficient

The key to understanding the diurnal cycle is to learn how
these changes in the trapping depth depend upon the day-to-
day variability in the heating and wind stress.

In this test problem, we use the wind field data and surface
heat fluxes from Price et al. [24], which are given in a time
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period of 4 days from day 128 to day 132. The wind field (7%,
7} and the surface heat flux (Qr = I — L, where [ and L
are solar insulation and heat loss, respectively) as well as the
observed temperature profiles in the first four days are presented
in Fig. 2. In order 1o assess owr model by wsing the one-
dimensional resulis, we also set up the model to a one-dimen-
sional form by eliminating all of the horizontal processes. The
total ocean depth is chosen to be 1000 m and upper ocean
depth 100 m, with a resolution of 32 levels for total and 24
levels in the upper ocean, respectively. The values of the param-
eters used in this simulation are shown in Table [a.

The simulated upper layer temperature profiles are also pre-
sented in Fig. 2 for comparison. This result shows a very good
agreement with the resuit of Price et al. (24]. We aiso plotted
the full depth of the density profiles in Fig. 3 which shows
how the upper layer of the ocean is responding to the diurnal
cycling. From these figures we can see that the transition base
can reach 60 m below the surface for this 4-day simulation.

NN

1@@@IIL|JIJ|ILI

12% 126 127 128

TIME

129 138

{BAYS)

FIG. 3. Time series of whole depth density profiles stitred by the diumal variability of heating and wind forcing,
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TABLE Ib

Values of the Parameters Used in the Seamount Test

Symbol Value Definition
L 42 Number of points in £ direction
M 41 Number of points in # direction
N 30 Vertical levels
Mt 500 m Minimum of water depth
[, 5000 m Maximuom of water depth
7 4. — 3.8 X g0 Background density stratification
Aue 5 X {Pmis™! Harmonic viscosity coefficient
A 1 X 1Fmism! Harmonic diffusion coefficient
Ku 1 X 10~ Vertical viscosity coefficient
K 1 X 107%mis™! Vertical diffusivity coefficient

These properties cannot be simulated without the higher resolu-
tion of the surface layer provided by the s-coordinate.

5.2. A Tall Seamount Topography

The seamount test case provides a measure of the errors in
the pressure gradient term in the presence of steep bathymetry
[3. 5]. The configuration is a tall, steep seamount in a channel,
closed on the north and south walls and recirculating through
the east and west boundaries. The computational domain has
dimensions of approximately 320 km by 320 km and is divided
into 40 X 40 grid cells. The isolated seamount is located in
the center of the channel and its topography can be described
by a Gaussian profile,

(%, ¥) = 5000 — 4500e~"",

where r is the distance from the center of the domain and D
is the width of the seamount. We used r = 4.5 km and / = 40
km in this test. By virtue of the curvilinear coordinate, finer
resolution is achieved near the center of the domain witha 2: 1
variation in grid spacing from the center to the edges. The
enhancement is applied in the same manner in both the x and
y directions.

The stratified fluid is represented by a total density profile
in the form

Poul = po + P (2) + {p(x,y, 2, 1) — p(2)}

p(z) = 4. — ye'™,
where p, = 1024 and y = 3.8 kg/m’ is the density anomaly
which corresponds to the Burger number {3]

_NUR

TR

=114,

where N? = gB_p/poH, and H is the maximum water depth,
The initial conditions for this test are a state of rest, i.e.,
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u=v=w=10,
and initially level isopycnal surfaces,

plz, 1= 0) = p(2).

The equation of state is chosen in the form of a singie density
variable rather than the function of temperature and density.
Other parameter values are given in Table Ib.

With these initial conditions and a strongly stratified profile
{y = 3.8 kg/m*), we have examined two experiments, one
without mixing and another with wind forcing and turbulent
mixing. The first experiment consists of two runs, one using
the s-coordinate with & = 3 and another using a o-coordinate;
both cases were run for 10 days. The results from the first run
are plotted in Fig. 4 for the sections of zonal velocity u, coordi-
nate levels, vertical velocity w, and initial density p through
the center of the seamount. The magnitude of the peak velocity
after 10 days is 0.83 X 107 m/s. Comparable results from the
second run, plotted in Fig. 5, shows more numerical noise,
especially near the surface layer. The magnitude of the peak
velocity in this case is 0.42 X 1072 m/s, which is about 5 times
bigger than that in the first case with the s-coordinate.

In the second experiment, we use the same s-coordinate as
in the first experiment, and apply the Mellor—Yamada level-2
turbulent mixing. A constant westward wind (v = —1 dyne/
cm?) is also used to test the surface mixing. Contours of the
surface elevation and the surface velocity field driven by the
wind are plotted in Fig. 6 and show the expected influence of
the seamount [5]. Sections of the velocity components u, v,
and w in Fig. 7 clearly show the surface mixed layer generated
by the turbulent mixing [14], despite the layer depth variations
across the seamount.

From these experiments, we conclude that the model with
the general vertical coordinate can handle the combined effects
of steep bathymetry and strong stratification as well as prior
models based upon the sigma coordinate system.

5.3. California Coast Region

The model domain is approximately 1000 km in along-chan-
nel lengih from the south side of Pt. Conception to the north
of Cape Blanco, and 700 km in cross-shelf extent. The coastal
wall is irregular in shape, featuring a set of capes and bays
whose cross-shelf excursions are largest near Cape Mendocina
and Pt. Arena. The coastal wall and the offshore boundary are
treated as impermeable, free-slip walls. The flow is periodic in
the along-channel direction. Using the horizontal orthogonal
curvilinear coordinates discussed in Section 2, the computa-
tional domain is discretized into 98 by 65 grid cells. The grid
cells are nonuniform in size, as shown in Fig. 8.

The underlying bottom topography is smoothed from the
realistic data in order to fit the north and south periodic boundary
conditions. The minimum and maximum depth values in the
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CONTQUR FROM .1 TO 1.9 BY .1

RHO(XI_1 = 20,0AY = 0.0!
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s
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CONTOUR FROM 2.1 TO 3.9 BY .1

FIG. 4. Contours of cross sections through the center of the seamount: {a) for u; {b) for coordinate levels; {¢) for w; and (d) for p in s-coordinate.

domain are 86 m at the coastal wall and 4600 m in the deep
adjacent ocean, respectively. The continental slope is quite
steep, the parameter » = Ah/2h = (h; — h,_D)/(h, + h2)
defined by Beckmann and Haidvogel {3] having a maximum
value of 0.423 at a distance about 20 km from the coastline.
This parameter is used to measure the hydrostatic consistency
associated with the g-coordinate system by Haney [15]. The
grid size is enhanced on the continental shelf and slope in order
to improve resolution in these regions. The values of parameters
used in these simulations are shown in Table lc.

With an equatorward wind, which is commonly observed
during spring and summer in this region, i.e., with

T¢=0, T7n=1X%X10"*X (0.1 — 0.5 cos(27 t/month)),

it is known that the equatorward wind drives the offshore trans-
port of surface water in the surface Ekman layer and causes

upwelling near the coastal boundary which leads to a lowering
of sea-level at the coast. We have run the model for 105 days
to demonstrate the phenomenology. Contours of the surface
elevation in Fig: 9a show the expected slope towards the coast.
Figure 9b shows the barotropic velocity field. The velocity field
shows a meandering equatorward jet with dipole eddies. The
eddies in the oftshore side of the jet ate anticyclonic and eddies
in another side are cyclonic. Cross-channel sections of meridio-
nal current plotted in Fig. 10a clearly shows the upper layer
equatorward coastal jet and a deep poleward return flow. Both
features are reminiscent of the observed currents in this region.
The cross section of density in Fig. 10b shows that the isopyc-
nals slope upward towards the shore as cooler, denser water
wells up to replace warmer, less dense surface waters. Time
steps used in this experiment are 216 s (400 steps per day) for
the internal mode and 10.8 s for the external mode. It takes
about 48 h on IBM RS/6000 (model 560) for the 120-day
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{levels = 30.theta = 0.0}

b
CONTOUR FROM .1 TO 1.9 8Y .1
RHO(X1 1 = 20,BAY = 0.0J
d
i —

———

COMTOUR FROM 2.1 TO 3.9 By .t

FIG. 5. Same as Fig. 4 but in ¢g-coordinate.

simulation. More detail simulations of the California current
system are reported in Song and Haidvogel [27].

6. CONCLUSION

In this paper, we have introduced a new general vertical
coordinate (s-coordinate} system to model stratified flow in
the coastal ocean. The model equations are the three-dimen-
sional, free surface, primitive equations with orthogonal curvi-
linear horizontal coordinates following the irregular coastal
boundaries. Several numerical modeling techniques have been
successfully tested. The implicit finite element formulation
in the vertical has the advantages of achieving higher accuracy
of solution and allowing larger time steps. The higher-order
Lagrange quadrature technique is essential to calculate the
dynamic pressure and vertical velocity accurately since both

58i/115/1-17

variables are very sensitive to numerical noise. Finally, surface
layer mixing is naturally appled in the s-coordinate which
allows a uniformly high resolution in the upper ocean.
Three realistic problems have been used to verify the
capabilities of the model. The diurnal cycling problem repre-
sents a physical process of ocean surface responding to strong
atmospheric forcing. The model has proven itself to be
capable of handling surface mixing dynamics. A tall seamount
bathymetry provides a severe bottom topography which may
lead to numerical errors and instabilities. The model has
proven to be stable and accurate even for a strong stratification.
Moreover, over the seamount bathymetry, turbulent closure
mixing has been applied to a wind-driven flow and generated
the expected surface mixed layer. The last realistic test
problem is the simulation of the California current system,
which 1s widely recognized as a complex coastal ocean
problemn. The model has been shown to be capable of dealing
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FIG. 6.

with the irregular coastal geometry, continental shelf slope
topography, and applied wind forcing.

The model formulated in this paper is designed to be a useful
tool for studying complex coastal ocean problems as well as
the basin-scale ocean circulation. Based on the model formula-
tion, a general sofiware package—SCRUM, standing for S-
coordinate Rutgers University model—has been developed and
tested for different problems. The three examples presented in
Section 5 illustrate the results generated from the model pack-
age. Further applications of the mode! to real oceanographic
problem are the subject of ongoing research.

APPENDIX A: FINITE ELEMENT APPROXIMATION

In this appendix, we describe the Galerkin finite element
method used to solve Eqs. (3.11)—(3.13) for U. First we replace
the differential equations and boundary conditions by the varia~
tional identity '

K aU\ oV
as

1 o _ 0 -
?\_A_:L H, 0V ds + J_l (‘H,,QU oy
. (A1)
= L RA(s)V(s)ds + VO F, — V(—DF,

where R, is the right-hand side of Eq. (3.13) and V(s) is an
arbitrary differential function, Within the class of H| functions
[11], the variational identity (A.1) is equivalent to the boundary
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{a) Contours of surface elevation; (b) the surface velocity field driven by a constant east wind on the seamount bathymetry.

problem (3.10)—(3.13). Using the Galerkin finite element dis-
cretization, some conservation properties can be preserved auto-
matically. In addition, the surface and bottom boundary condi-
tions can be naturally applied to the right-hand side of the
variational eguations.

The basis function can be written as

(s — 5o ) As, 5E [5.1, 5],
YUs) = § (Sie1 — ) A5, 5 E [5e, 501,
0, otherwise,

where the domain [—1, 0] is divided into N equal subdomains
(elements) and As = s5,,; — 5;. Expanding & and V(s) by basis
functions vy,(s) and evaluating the integrals, we obtain identity
(A1) in the form [18]

I k=N-1

m k=0 AZ&{(UJ(V& + 01;+1Vﬁ+1}/3 + (ﬁmvk + 0ka+1)/6}
- ET:)H Qi+ o U+ 001 + 2000000 )Vir) — Vi)I6
+ Z::;,_l (C’k+l - Uk)Kk+]j2(Vk+l - Vk)/Azk (A'z)

k=N . ~ . -
= Ek=u l As QR ViR Vit RVt 2Rc,k+lvk+l)l6

+ Ve — TV,

where Az, = HyAs, is the vertical grid spacing in the physical
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FIG. 7. Conours of cross sections through the center of the seamount: (a}
for u; (b) for v; (¢) for w with Mellor-Yamada level-2 turbulent mixing after
20 days driven by a constant east wind.

domain and w = H,{). This variational equation is required to
hold for all {V,}. Setting the ceefficient of V, equal to zero, we
recover the tridiagonal system,

_Ak(:’!k—] + Bk(]k - Ckljkﬂ = Dk, k= 0, reey N. (A.?})

The coefficients A,, B;, C,, and D, are the analogous of

Lardner and Song {18]. The tridiagonal system can be straight-

forwardly solved in O(N) operations [10} by forward elimi-
nation,

Bt = Bk - A;(Ck—|/Bk_| . Dk = D[( + A;,Dk—p’Bk_| . k= 1, . N,
(A4}
and back substitution,
C’N=DNIBN, ﬂki(Dk"'CkﬁkH)/Bk, k=N"1,...,0.
(A.5)
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FIG. 8. Grid cell configuration for California coast.

From Eq. (A.3), velocity profiles [/ **' can therefore be ob-
tained, and similar procedures yield temperature and salinity
profiles. As shown by Lardner and Song [18] the above forward
elimination and back substitution can relax the CFI restriction
due to vertical discretization; stability is guaranteed so long as

{A.D)

\wk|<min{ Az, 6K }

Az
ZAAPGA A 5 Az

APPENDIX B: AN ADVECTION AND
DIFFUSION PROBLEM

In this appendix, we shall show how the above finite element
technique works for a simple one-dimensional advection—
diffusion problem like (3.10)—(3.11). The problem considered

here is
o8
— =0
Kaz)

as as @ '
22y .
ar Vaz az( (B.1)

with

K§=n,

atz = {;
az e=

(B.2)
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TABLE Ic

Values of the Parameters Used in the California
Current Simulations

Symbol Value Definition
L 98 Number of points in 7 direction
M 63 Number of points in ¢ direction
N 30 Vertical levels
k. 100 m Parameter in s-coordinate
8 3 Parameter in s-coordinate
B 86 m Minimum of water depth
Himax 4600 m Maximum of water depth
il 4. — 3.2 X ¥ Background density stratification
A 3 X 10ms™! Harmonic viscosity coefficient
Aun 1 X 10Pmis™! Harmonic diffusion coefficient
Ky 13X 1072 + 2 X 107 % ¢ Venical viscosity coefficient
Ky 1 X 107+ 2 X 107 X ¢ Vertical diffusivity coefficient

K—“E—rh, atz= —h (B.3)
dz
This problem has the exact solution
[
Sz, = exp(—{z — zp — wi)}/4Kr), (B4)
) Va4nKt P !

providing the initial condition is a point source S(z, 0) = ¢ 8(z,),
which is discretized as

c/Azn, k=,
Sz, 0y = { ¢ )
0, otherwise.
This initial condition is discontinuous and chosen to test how

severe a problem the algorithm can handle. The corresponding
boundary conditions are

—&+ 7+ wr

h+z+wt
7, = 8¢, F)_2I'_, —_—

= S(~h, 1) (B.5)

The nondimensional parameters used are K = 0,001, ¢ = 2000,
w = —0.00001, and depth # = 1000 m in this problem. The
depth is divided into 30 levels with about 20 levels in the upper
200 m, corresponding to 4. = 50 m and @ = 3.2 in the s-
coordinate, and to a minimum grid size of about 2.4 m near
the surface. Based on this grid spacing, the CFL. condition is
Az%/(2K) == 3000 s. Tabie Ii gives the computed solutions after
200 time steps (about 42 days) using a time step of 18,000 s
(5 h), six times longer than that allowed by the CFL condition.
For simplicity, only the values at even levels are presented
here. The errors listed are relative errors when the soluticn is
greater than (.05 or else absolute errors between the exact
solution (B.4) and the computed solution. From this test prob-
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lem, we can see that the finite element method can achieve a
highly accurate solution even for a discontinuous initial source.

APPENDIX C: CALCULATION OF THE PRESSURE
AND £} PROFILES

In this appendix, we describe a quadrature integration tech-
nique used for calcuiating the pressure and {1 profiles. In the
s-coordinate system, the dynamic pressure can be obtained by
integrating the density from the surface

(1]
=& PHpys pds + £ [ Hip - pas, ©1)
Po s Po’s

where p, the background profile of the perturbation density p,
is chosen such that the first integral can be evaluated analytically
and p — p in the second term can be minimized. For example,
by choosing p = pi{z) + pafx, y), where p(z) is the mean
stratification and p,(x, y) is the surface values of p — p;, the
first integral can be calculated analytically and the second integ-
rand has zero value at the surface such that it can be calcu-
lated accurately.

In order to obtain €} and avoid calculating { from Eq. (2.26),
we subtract Eq. (2.26} from (3.3) and have

i(HO,)___a_(H,,u—DtT)__a_(H,,v—DE)
ds \ _mn a¢ n an m '

Then

. ol o {Hyu— Du a HgU“DlT
it < [ {3 () o 5 () e

(C.2)

By using a traditional integrating method to calculate (C.1) and
(C.2), itis difficult to achieve a high accuracy for the uppermost
levels since other levels outside of the integral domain are not
used. However, by using the Lagrange quadrature technique as
shown by Leslie and Purser [19], higher order accuracy can be
achieved. The basic idea is to interpolate the integrand by
Lagrange polynomials and then use the quadrature formula to
calculate the integral.

Let ¢(s;) be a generic integrand at level s;, then, the 2 mth-
order Lagrange interpolation of {y+(s,)} in the domain of [—1,1]
can be written

i=d,

v~ S ), o= [1 =,
i=J) FELE ) 875

(C.3)

where s € [5¢, 514(], /1 = max(0, k — m), and J, = min(¥, &
+ m).Then, the integrals of {C.1) and (C.2) have the form
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SCRUM nlrhobar, CTZ SCRUM nlrhobar CTZ
a ZETA(DAY = 105.0) BT VELOCITY(DAY =  105.0)
1
FI1G. 9. (a) contour of surface elevation; (b} surface velocity field after 105 days forced by a time variable wind.
& TABLE Ii
Computed Solution and Exact Solution of a 1D Advection and
Diffusion Problem after 200 Time Steps (42 Days)

_____ Level Depth (m) Exact Computed Error
AT | 30 0.00 7.8248 7.8204 ~0.0006
o PR e 28 472 8.0795 8.0841 —0.0006
CONTOUR FRON -.775 T0 275 BY .05 26 2.69 83291 8.3338 —0.0006
24 15.23 8.5812 8.5860 —0.0006
S —— bl 21.74 8.8390 8.8441 —0.0006
b _r‘f:/‘— 20 29.80 9.0949 9.1003 —0.0006
18 40.29 9.3126 9.3187 —0.0007
16 54.53 0.3847 9.3920 —0.0008
14 74.54 0.0472 0.0564 —=0.0010
12 103.40 7.7829 7.7952 —-0.0016
10 145.83 5.0589 5.0692 —0.0020
. 8 209.04 1.6764 1.6470 0.0178
2600 ™ 700 6 304.12 0.1122 0.0642 0.0480
7(:311:& FROM 24.1 TO 26.8 BY .1 ° 1ok ° 4 448.02 0.0002 0.0003 ~0.0001
’ T 2 666.71 0.0000 0.0000 0.0000
FIG. 10. Results after 105 days forced by a time variable wind: (a) section 0 1000.00 0.0000 0.0000 0.0000

of u across-shelf near Pt. Arena, u, is the along-coast component, dashed
contour lines for equatorward flow; (b} section of density across-shelf near Note. Errors listed are relative errors when the values of the exact solution
Pt. Arena. are greater than 0.05.
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TABLE Illa

Numerical Integration Errors for Function ¢ = sin(ms) by the
Trapezoidal, Simpson, and Quadrature Methods, Respectively

SONG AND HAIDVOGEL

TABLE IIIb

Numerical Integration Errors for Function ¢ = 1/{1.5 — 5)* by the

Trapezoidal, Simpson, and Quadrature Methods, Respectively

Y = sin(7s) Error ¥= 1415 — 5P Error
Level Exact Trapezoidal Simpson Quadrature Level Exact Trapezoidal Simpson Quadrature
16 0.074470 —0.7577E-03° 0.6318E-05 0.2012E-06 16 0.615385 0.1087E-01 0.4640E-03 0.6318E-05
14 0.263036 —0.2676E-02 0.2220E-04 0.6855E-06 14 0.941176 0.1387E-01 0.5340E-03 0.7272E-05
12 0.477465 —{.4858E-02 0.4029E-(4 0.7153E-06 12 1.142857 Q.1501E-01 0.5507E-03 0.7391E-05
10 0.617423 —0.6282E-02 0.5203E-04 0.7749E-06 10 1.280000 0.1554E-01 0.5561E-03 0.7391E-05
8 0.617423 —0.6282E-02 (.5203E-04 0.7749E-06 8 1.379310 0.1581E-01 0.5581E-03 (.7391E-05
6 0.477465 —0.4858E-02 0.4023E-04 0.8047E-06 6 1.454545 0.1597E-01 0.5589E-03 (0.7391E-05
4 0.263036 —0.2676E-02 0.2220E-04 0.2682E-06 4 1.513514 0.1607E-01 0.5594E-03 0.7510E-05
2 0.074470 —0.7577E-03 0.6340E-05 —0.2384E-06 2 1.560976 (0.1613E-01 0.5597E-03 (.7749E-05
0 0.000000 0.1863E-08 0.1766E-07 —0.4042E-06 0 1.600000 0.1617E-01 0.5598E-03 0.7629E-05

i=1y

6. A. Davies (Ed.) Modeling Marine Svstems, I, I {CRC Press, Boca Raton,

[Lwas=3 [ 10 dsved =T aut. (€4)

From integral approximation theory, we know that the above
quadrature formula can achieve (2m + 1)th-order accuracy. In
order to verify this technique, several numerical tests have been
carried out to compare it with the traditional trapezoidal formula
and Simpson’s formula. The comparison is given in Table Ifla
for the integrand function (s) = sin(7s) and in Table I1Ib for
the integrand function ¢(s) = 1/(1.5 — s). For simplicity, only
the values at even levels are presented here. Both integrals are
calculated from a level s to 1 in [—1, 1] with 16 equally
spaced levels with m = 2 and 4 in the Lagrange interpolation,
respectively. From these examples we can see that the accuracy
can be significantly improved by using the quadrature formu-
lation.
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