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ABSTRACT

General kinematical arguments are used to derive certain properties of eddy fluxes of conserved quan-
tities in a field of small-amplitude waves. The direction of the eddy flux is related in a simple way to wave
transience and dissipation; in the absence of local sources and sinks the flux in a steady wave field is
directed normal to the background gradient. The flux is expressed as the sum of advective and diffusive

terms in addition to a nondivergent contribution.

1. Introduction

Transfer of heat, momentum, chemical constitu-
ents, etc., by atmospheric eddies on many scales is
of central importance in the overall balance of these
quantities. In ‘‘climate’’ models which seek to
simulate space- or time-averaged budgets, the eddy
transport of conservative quantities frequently is
represented as a diffusion process, with positive
diffusion coefficients. The transfer is thus assumed
to be downgradient in direction and diffusive in
character. This assumption is traditionally based on
“‘mixing length’’ arguments which may not be ap-
propriate to wave motions in which a fluid element
may preserve its identity over many oscillations
without significant mixing with its environment.
Indeed, analysis of stratospheric observations
(Hartmann, 1977; Wallace, 1978) reveals that merid-
ional eddy fluxes of potential vorticity and heat are
countergradient in many regions.

Wallace (1978) argued on physical grounds that
the eddy flux of heat in the lower stratosphere could
be regarded as advection by the Stokes’ drift associ-
ated with the wave motion. In certain circumstances,
therefore, it may be more appropriate to regard wave
transfer as an advective, rather than diffusive,
process. Dyer (1970) attempted to model the devel-
opment of the stratospheric cloud of debris from
the Mt. Agung eruption by diffusion but had to in-
troduce large off-diagonal components of the dif-
fusivity tensor in order to fit the data. The overall
appearance of the data, however, is suggestive of
advection rather than diffusion.

Recently, a number of authors (notably Andrews
and Mclntyre, 1976; Boyd, 1976; see the review by
Mclintyre, 1979) have emphasized the need to con-
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sider the total wave flux. In addition to the eddy
flux (and formally of the same order) is the flux as-
sociated with the second-order wave-induced mean
circulation. It is the divergence of this total wave
flux that determines the mean tendencies. Andrews
and McIntyre (1978) have presented an elegant and
very general description of wave transfer in a
Lagrangian-mean formulation. Some of the basic
results of the present paper are readily derivable
from their work; however, working in Eulerian vari-
ables allows elucidation of some properties of
Eulerian eddy fluxes that would not be apparent in
a Lagrangian framework.

In the following sections it is shown on purely
kinematic grounds that the direction of the eddy
flux of any tracer g relative to the mean background
gradient is determined by transience and local
sources and sinks. The divergent part of the eddy
fiux of an exactly conserved tracer in a growing wave
field may be represented by the sum of advective
and diffusion-like terms, a generalization of the
classical two-dimensional result of Taylor (1215).
For steady motion this flux reduces to advection by
the Stokes’ drift velocity, plus a nondivergent term,
and the total wave transfer is simply a process of
advection by the Lagrangian-mean flow, as shown
by Andrews and McIntyre (1978). In the presence of
a simple weak sink, the transfer includes an addi-
tional diffusive term for which the transfer coeffi-
cient is proportional to the sink strength.

Following preparation of a first draft of this paper
I was made aware of independent studies of tracer
transport by quasi-geostrophic planetary waves by
Clark and Rogers (1978) and Holton (1979). The
present work is more general in its applicability and
the results presented here encompass those obtained
by these authors.
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FiG .1. Schematic diagram showing the relationship between
the directions of the eddy flux F of an exactly conserved tracer
and background gradient Vg,. (a) Steady waves, F-Vg, =0
[cf. Fig. 1 of Clark and Rogers (1979)]. (b) Growing baroclinic
waves. The eddy heat flux component along the direction of
V6, is downgradient.

2. Definitions

We adopt a Cartesian system (x,y,z) with z a log-
pressure vertical coordinate (e.g., see Holton 1975,
p. 29); the basic density structure is p,(z). The
background state of the fluid (i.e., in the absence of
wave motion) is taken to be independent of the
‘‘zonal’’ coordinate x, with a zonal mean flow
(1,,0,0). The continuity equation is

V-(p,u) = 0. o

We consider the evolution of a tracer of mixing
ratio g, satisfying

2

where Q represents sources and/or sinks of g. We
define an Eulerian zonal mean

1 x
& o e—
% )
over some suitable interval (—X, X) such that
da/dx = 0; the wave component a’, where

adx

A3)

a=a—a

C))

is taken to be O(e), is some appropriate 'sense,
where €, which is small, is a measure of the wave
amplitude. Then (2) minus its zonal mean is
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Dig' +u'-Vgy = Q' &)

correct to O(e?), where g, is the background g
field and where

0 i)

Dt = + 120 a_x . (6)
Using (1), the zonal mean of (2) becomes
4 _ _ 1 _
(—+u2-V)q ——_—VF+Q O
o P

correct to O(e?), where u, is the O(e?) wave-induced
mean Eulerian circulation velocity, and where

F=pu'q (®)
is the eddy flux of g. Eq. (7) may be written
. I ) )
- & ) ©)
ot  Px
" where F is the total wave flux
. F =F + p,iigo (100
to O(e?).
3. Direction of the eddy flux
Multiplying (5) by ¢’ and averaging gives
' —  106G*
F- Vg, = 0 — - . 11
o P*(QQ 2az) an

A corresponding relation for quasi-geostrophic po-
tential vorticity was derived by Holton and Dunker-
ton (1978) and by Holton (1979). Eq. (11) relatesin a
very simple form the direction of the eddy flux to
wave transience and local sources and sinks of g.

For an exactly conserved? ¢ and steady waves
F-Vg, = 0 (Clark and Rogers, 1978). In many such
cases (under conditions which will become apparent
in Section 6) F is nonzero and therefore (9) states
that the eddy flux must be directed along lines of
constant g,, as shown in Fig. la. Note, however,
that in any given direction, the flux may be up or
down the component of Vg, in that direction. In the
example of Fig. 1a the horizontal component of F is
down the gradient dq,/8y while the vertical com-
ponent is upgradient.

If the wave motion is transient and Q' = 0,
F-Vg, = —%p,8(q'®/dt. Therefore, for growing
(decaying) disturbances the eddy flux component
along the direction of Vg, is downgradient (up-
gradient). But note again that this is not necessarily
true in any other direction. A well-known example
is heat transfer by growing baroclinic waves (see
Fig. 1b). Such waves, of course, derive their energy by

2 By *‘conserved’’ we mean Q = 0, i.e., there are no sources
or sinks of g. There may be sources and sinks of other wave vari-
ables, e.g., heat or momentum, if ¢ is independent of these.
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transferring heat upward, against the basic stable
stratification. Therefore, the horizontal flux pxv'6’
(where 6 is potential temperature) must be down-
gradient® (i.e., poleward) and of sufficiently large
amplitude to ensure that (11) is satisfied, as shown
in Fig. 1b.

For steady waves but a nonconserved tracer, the
direction of F is determined by ¢'Q’. If the wave
motion is dissipated by a simple mechanism of the
form Q' = —\q’, where A > 0 (e.g., Newtonian
cooling) g is potential temperature, then F- Vg, < 0
everywhere. This is not necessarily true for other
forms of dissipation. However, if we define a dissi-
pative process as one which tends to reduce g2
over a certain region then g’Q’ < 0 on average over
that region. This can be seen by multiplying (2) by g,
averaging and assuming that Q = 0. Then the eddy
flux component in the direction of ¥g, is down-
gradient on average, in the sense that

HF-Véodydz <0,

where the integral is over the dissipation region.
However, the flux is not necessarily downgradient
everywhere.

Similarly, if g'Q’ integrated over a region of wave
forcing is positive, F-Vq, is on average, but not
necessarily everywhere, also positive.

4. Form of the eddy flux

Following Andrews and Mclntyre (1978), we de-
fine a Lagrangian disturbance-associated particle
displacement £’ such that

& =0, (12)
V:(p,£) =0 (13)

and, correct to O(e?),
D& =u =u' + (& VX, (14

where u' is the Lagrangian disturbance velocity and
X the unit vector in the x direction. We also define

s’ where
Q' = Dys’'. (15)
Then (5) gives
q'=s" — &-Vq,. (16)
Therefore, from (8),
F=F,+F,y, an
where
Fq = p,u's’ (18)

3 A baroclinic wave, of course, need not release available
potential energy everywhere. In the lower stratosphere, the
horizontal heat flux is poleward, i.e., upgradient and this argu-
ment then demonstrates that the vertical flux must be down-
ward there.
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is the eddy flux of g arising from the presence of
local sources and sinks and the remaining ‘‘con-
servative’’ contribution is

Fo = —p,u'(§'-V)q,. (19)

it is difficult to make any general statements about
F, (beyond those presented in Section 3) without
consideration of the dynamics of the problem at
hand. Initially, therefore, attention is restricted to
exactly conserved tracers but we note here that the
additional flux ¥, must be included in any regions
where Q' is nonzero. The form of Fg in steady waves
with a weak sink Q’ will be considered in Section 7.

Using subscripts (1,2,3) to represent (x,y,z) com-
ponents, Eq. (19) may be written*

Fy= —p,ui&i0:q0
= —puifiddo (20)

(summation over repeated suffix implied), using
(14), where 9; = 9/0x;. Now note that

ulé] = Ky + Ly, (21)
where
Ky= LGl +dE) = -2 @&, @
ij 2 Uuis; iSi 2ot i€i)s
L,= %(E — ulgl). (23)
Also note, using (13) that
3 (p,UlE) = p,Edul = p,s, (24)

where @° is, to O(e?), the Stokes’ drift velocity as-
sociated with the wave motion (Andrews and
Mclntyre, 1978). Then (20) may be written®

F; = P*Ui% — pKii0;g0 — 0;(Lypydo), (25)
where the velocity U satisfies
p,U; = ai(p*Lij) = p, i — 0(p,Ky;). (26)

Eq. (25) expresses the eddy flux as the sum of
advection by the velocity U, a diffusion-like term
with a transfer coefficient K and a third term whose
significance will be discussed below. The tensor K
clearly disappears for steady waves [here ‘‘steady’’
means 8(a’b’)/dt = 0, where a’ and b’ are any wave
variables]. It is a symmetric tensor with positive
(negative) diagonal components for growing (decay-
ing) disturbances, and therefore in a growing wave
field the second term in (25) has the characteristics
of a diffusion process.

Note that while p uis divergent for time-depend-
ent motions (Andrews and McIntyre 1978) p U is

4 Since F = F(y,z) the i = 1 component is irrelevant in (7).
Eq. (20) and subsequent equations therefore apply fori = 2 or 3
only, for which, from (14) we may write u; = u}.

*In two dimensions, Eq. (25) reduces to F, = —p_K;8:q,
(cf. Taylor, 1915).
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FiG. 2. Schemiatic diagram of the deformation of material sur-
faces and associated transfer of wave motion. (a) No wave.
(b) Symmetric wave (8K,,/8y = 0). (c) Asymmetric wave
(0K,,/0y # 0). See text for discussion.

(c)

a nondivergent mass flux. This follows from the ob-
servation from (23) that L,;; = —L;; and hence ‘

0:9(Li;a) = —8;0(Lya) = 0, 27

where a is any scalar. From the definition (26) it
then follows that

8:(p,Uy) = 0. (28)

A corollary of (27) is that the third term in (25) is
nondivergent and therefore that the eddy flux di-
vergence is

8;F; = p, Ui8:do — 0:(p,Ki;0;q0)- (29)

The third term in (25) plays no part in the evolu-
tion of g which is governed simply by the advection
and diffusion terms. However, this term does con-
tribute to F itself and must therefore be considered
in interpretation of eddy flux data.

The total wave flux is

Fi = P*UiQO -

where

P Ki;0;Go — 0;(Liipyqo), (30)

A 1
) Py
and where u’ = u + v’ is the wave-induced La-

grangian mean velocity (Andrews and Mclntyre,
1978) defined by

€2V
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u(x +¢&')dx. (32)

=L J i
2X J.x
Here @” is the velocity of the center of mass of a
material string of particles located along the path of
integration in (32).
From (9) with Q = 0 and (30), the evolution of ¢
is determined by

0q . R
— = —p,U;8:Go + 8;(p,Ki;0;G0). (33)

P "ot

5. Relationship with Lagrangian formulation and
origin of the diffusion terms

Applying the Lagrangian mean operator defined
in (32) to (2) gives

0 L

— +0a--Vigh = 34
F Jar=0 (34)
(Andrews and MclIntyre, 1978). If O = 0, then (34)
states that the mean of g along a material string of
particles is conserved following u’. ¢* is related to
the Eulerian mean by

@t =q+q, (35)
where g° is the Stokes’ correction
q* = 0,9’ + Y51 €0:0:d0 (36).

to O(e?). Noting that the nonzonal components of

i’ are O(e?) and that g* = g, + O(€?), Eq. (34) may

be written, with @ = 0, as
g e 0g°.
— = —ut-Vg, — .
ot "

The Lagrangian advection term has a simple phys-
ical explanation and, through (31), is directly identi-
fiable in the Eulerian result (33). Using (36), (16)
and (13) to evaluate —3G°/9¢t, we recover the remain-
ing terms in (33). Thus we see that the terms in (31)
and (33) involving the tensor K arise from the chang-
ing relationship between Lagrangian and Eulerian
means in a time-dependent wave field.

In an Eulerian framework the origin of these terms
may be understood as follows. Consider two-
dimensional (x,y) motion with & =0 at r=0
(Fig. 2a). To take account of the Lagrangian mean
advection the coordinate system moves with veloc-
ity o¥ in the y direction. Now if a symmetric wave
(i.e., 0K,,/0y = 0) develops in 0 < ¢ < ¢, then at
t = t, the fluid particles at y = y, have their origins
in the range (v, — Ay, yo + Ay)as shown in Fig. 2b.
Thus g is diffused; the process is represented by
the second term on the right-hand side of (33). If
the wave is asymmetric (8K,,/dy # 0), then at
t = t, the particles aty = y, have their origins in the
range (yo — Ay~,y, + Ay*), where Ay* # Ay~ (Fig.

(37
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2¢). Thus, in addition to the diffusion term, the re-
sultant g tendency at y = y, is characterized by an
effective advection (from above in the example of
Fig. 2c). This advection is represented by the second
term in (31).

6. Conserved tracer, steady waves

In a field of steady waves (25) and (26) give

F; = p.iiqo — 8;(Li;p,Go), (38)
while (33) becomes
o
2~ kg, (39)
ot

Eg. (39) could, of course, have been obtained more
readily via the Lagrangian mean formulation pre-
sented in Section 5. So too could the implication of
(38) that the divergent part of the eddy flux simply
represents advection by the Stokes’ velocity. How-
ever the nondivergent part of (38) and the related
result from Section 3 that F-Vg, = 0 could not be
obtained in that way.

It follows from (26) and (28) that the mass flux
p«+&° is now nondivergent and we may therefore de-
fine a streamfunction x* for the Stokes flow such that

9 9 ) .
o )X
Using (26) and the antisymmetry of L, Eq. (38) may
be written

p, (7°3%) = ( (40)

Fi = —"p*LiJ'quO: (41)
where
0 8
prlo= (5. %) @)

Egs. (38), (41) and (42) are in agreement with
the physical arguments of Wallace (1978). In partic-
ular, in the presence of a strong vertical gradient
of G,, it follows from (41) and (42) that there is a
correspondingly large horizontal eddy flux
_ 5990
Fa X 0z

as Wallace suggested [with ¢ = potential temper-
ature (see also Clark and Rogers, 1978; Holton,
1979)].

Especially in rotational problems, the Stokes’
drift is rarely zero and therefore the eddy fluxes are
nonzero. However, this does not necessarily mean
that transfer is taking place. The generalized non-
acceleration theorem of Andrews and Mcintyre
(1978) implies that if the waves are steady and con-
servative (i.e., if sources and sinks of heat and
momentum are everywhere absent) then #* and w*
are everywhere zero. Then (39) shows that there is
no net transfer of g; in Eulerian terms this arises

R. A. PLUMB
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because the wave-induced mean circulation exactly
cancels the eddy flux divergence (Andrews and
Mclntyre, 1976; Boyd, 1976). If these conditions
break down somewhere (as they usually do) then a
nonzero Lagrangian mean circulation exists within a
height H = fL/N (where f, L and N are the Coriolis
parameter, horizontal length scale and buoyancy
frequency respectively) of such regions (MclIntyre,
1979). Evaluation of & is a dynamical problem and
is beyond the scope of this paper.®

7. Weakly nonconserved tracer, steady waves
When @’ is nonzero the eddy flux, from (17) and

(38), takes the form
F; = piiiGo — 0(Lypyqo) + (Fo)is (44)
where (Fy); is given by (18). For steady waves
u's’ = —&'Q’ and therefore (18) may be written
(Foli = —py&iQ’, 45)
fori # 1.
We now consider a weak sink of the form
Q' = -\q, (46)

where A > 0 everywhere. Here ‘‘weak’’ is taken to
mean that, to a good approximation, Eq. (16) may

be written
q' = —§-Vq,. 47N
Then (45), (46) and (47) give
(FQ)i = —P*Kijajf%, (48)
where )
Ki; = A& 49)

[(cf. (22)]. Substituting into (44) and taking the
divergence now yields
9q Lo s o o s

p*—(')T = ‘P*“z!'ai‘h + al(p*KUBJQO)
Therefore transport by steady waves in the presence
of a sink satisfying (46) takes the form of diffusion
plus advection by the Lagrangian mean flow and is
thus qualitatively similar to transfer of a conserved
tracer by growing waves. For this case, however,
note from (49) that K is proportional to the sink
strength A and therefore different species of tracer
will diffuse at different rates.

(50

8. Discussion

Using only kinematic arguments it has been found
that the eddy fiux of a conservative quantity by
small-amplitude waves may be expressed as (i) ad-
vection by the velocity U (ii) a diffusion-like term
with transfer coefficient K, and (iii) a nondivergent

¢ A preliminary calculation of the Lagrangian mean meridional
circulation in the stratosphere and mesosphere has been presented
by Dunkerton (1978).
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term involving the tensor L. The exchange coeffi-
cients U, K and L are functions only of the wave parti-
cle velocities and displacements. K is zero for a con-
served tracer in a steady wave field. The component
of eddy flux of an exactly conserved tracer in the
direction of the background gradient is down-
gradient/zero/upgradient for growing/steady/decay-
ing waves.

Additional terms arise in the presence of local
sources or sinks Q. In a region of forcing (q’'Q’
> () the additional transfer is on average upgradient
whereas it is on average downgradient in dissipa-
tion regions where ¢’'Q’ < 0. If the sink takes the
simple form Q' = —Ag’ (A > 0) then the eddy flux
component in the direction of the g, gradient is
everywhere downgradient If this sink is weak, then
transfer again is described by three terms of the
form (i), (ii) and (iii) above.

While these results do not apply to transfer of
nonconserved quantities, it is sometimes possible
to derive appropriate relations from a knowledge
of conservative transfer. Green (1970), for instance,
obtained an expression for transfer of zonal momen-
tum in terms of entropy and potential vorticity
transfer.

In general, it has been shown that eddy fluxes
(or, indeed, total wave fluxes) are not necessarily
downgradient. Even in circumstances in which the
eddy flux component along the direction of the back-
ground gradient is downgradient, such a relation-
ship need not hold in other directions. In the common
situation where the waves may be regarded as steady
and local sources and sinks are negligible, the

-divergent part of the eddy flux simply represents
advection by the Stokes’ drift velocity. Because of
the nondivergent term, however, F is not in the
direction of @° but is directed along the surfaces of
constant G,.

Finally, it is worth emphasizing that the results
presented here have been derived on the assumption
that the wave amplitude € is small and that they
may not be appropriate for larger amplitude motions.
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