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Wave shape (i.e. skewness or asymmetry) plays an important role in beach morphology
evolution, remote sensing and ship safety. The wind’s influence on ocean waves has been
extensively studied theoretically in the context of growth, but most theories are phase
averaged and cannot predict wave shape. Most laboratory and numerical studies similarly
focus on wave growth. A few laboratory experiments have demonstrated that wind can
change wave shape, and two-phase numerical simulations have also noted wind-induced
wave-shape changes. However, the wind’s effect on wave shape is poorly understood,
and no theory for it exists. For weakly nonlinear waves, wave-shape parameters are the
phase of the first harmonic relative to the primary frequency (or harmonic phase HP,
zero for a Stokes wave) and relative amplitude of the first harmonic to the primary
wave. Here, surface pressure profiles (denoted Jeffreys, Miles and generalized Miles)
are prescribed based on wind–wave generation theories. Theoretical solutions are derived
for quasi-periodic progressive waves and the wind-induced changes to the HP, relative
harmonic amplitude, as well as the already known phase speed changes and growth
rates. The wave-shape parameters depend upon the chosen surface pressure profile,
pressure magnitude and phase relative to the wave profile and non-dimensional depth.
Wave asymmetry is linked to the non-dimensional growth rate. Atmospheric large eddy
simulations constrain pressure profile parameters. The HP predictions are qualitatively
consistent with laboratory observations. This theory, together with the HP and relative
harmonic amplitude observables, can provide insight into the actual wave surface pressure
profile.

Key words: surface gravity waves, wind–wave interactions, air/sea interactions

1. Introduction

The shape of surface gravity waves plays a role in many physical phenomena. Wave
shape is described by the third-order statistical moments, skewness and asymmetry (e.g.
Hasselmann 1962; Elgar, Freilich & Guza 1990). Wave skewness represents a wave’s
vertical asymmetry, while wave asymmetry corresponds to its horizontal asymmetry.
These two parameters are integral in determining sediment transport direction (onshore
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vs. offshore) and magnitude (e.g. Drake & Calantoni 2001; Hsu & Hanes 2004;
Gonzalez-Rodriguez & Madsen 2007), which play key roles in beach morphodynamics
(e.g. Hoefel & Elgar 2003; Grasso, Michallet & Barthélemy 2011). Wave shape is also
pertinent in remote sensing, where wave skewness modulates the returned waveform in
radar altimetry (e.g. Jackson 1979; Hayne 1980; Huang et al. 1983) and wave asymmetry
affects the thermal emissions measured in polarimetric radiometry (e.g. Kunkee &
Gasiewski 1997; Piepmeier & Gasiewski 2001; Johnson & Cai 2002). Additionally,
these wave-shape parameters play a role in determining ship response to wave impacts
(e.g. Soares, Fonseca & Pascoal 2008; Oberhagemann, Ley & el Moctar 2013). Waves
propagating on a flat bottom are ordinarily symmetric, although a number of processes
can create asymmetry. While some wave asymmetry-inducing phenomena, such as wave
shoaling (e.g. Elgar & Guza 1985, 1986) and vertically sheared currents (e.g. Chen & Zou
2018, 2019), are well understood, the wind’s effect on wave shape is still poorly understood.

The influence of wind on ocean waves has been extensively studied, although primarily
in the context of wave growth. An initial investigation by Jeffreys (1925) was based on a
sheltering hypothesis, where separated airflow resulted in reduced pressure on the wave’s
leeward side, causing wave growth. While conceptually simple, this mechanism has largely
fallen out of favour because such separation only seems to occur near breaking (Banner &
Melville 1976) or for steep waves under strong winds (e.g. Touboul & Kharif 2006; Tian &
Choi 2013). Nevertheless, Jeffreys’s theory has inspired some recent work; Belcher & Hunt
(1993) developed a fully turbulent model wherein the sheltering effect causes a thickening
of the boundary layer and wave growth, even without separation. Later treatments utilized
different physical mechanisms such as resonant forcing by incoherent, turbulent eddies
(Phillips 1957), vortex forcing from vertically sheared airflow (e.g. Miles 1957; Lighthill
1962) and non-separated sheltering (e.g. Belcher & Hunt 1993). Janssen (2004) provides
an extensive overview of the relevant developments in wind–wave generation theory.
When deriving energy and momentum fluxes from air to water, these seminal theories
of wave growth (e.g. Phillips 1957; Lighthill 1962; Belcher & Hunt 1993) utilized a
phase-averaging technique, which removes wave-shape information. Thus, although these
wind–wave interaction theories focused on the wave growth rate, no theoretical work has
investigated the effect of wind on wave shape in a physically consistent manner.

Measurements and numerical simulations have also been used to investigate the
dependence of wave growth on wind speed. Field measurements (e.g. Longuet-Higgins
1962; Snyder 1966; Hasselmann et al. 1973) and laboratory experiments (e.g. Shemdin
& Hsu 1967; Plant & Wright 1977; Mitsuyasu & Honda 1982) have been used to
parameterize how quickly intermediate- and deep-water waves grow under various wind
conditions, including short fetch (e.g. Lamont-Smith & Waseda 2008) and strong wind
conditions (e.g. Troitskaya et al. 2012). Note that direct measurements of wave surface
pressure (related to growth) are notoriously difficult (e.g. Donelan et al. 2005). Similarly,
numerical simulations have also been used to predict wind-induced growth rates. Early
numerical atmospheric models used the Reynolds-averaged Navier–Stokes equations (e.g.
Gent & Taylor 1976; Al-Zanaidi & Hui 1984) to calculate the energy loss of the wind
field. However, these early simulations could only approximate turbulence through a
Reynolds-averaging process. Recent studies have analysed the turbulence behaviour in
detail. Particle image velocimetry and laser-induced fluorescence have been used for
turbulence measurements in laboratory experiments and have revealed turbulent structures
above the waves (e.g. Veron, Saxena & Misra 2007; Buckley & Veron 2017, 2019). This
turbulent behaviour has also been captured through direct numerical simulations of the
governing equations (e.g. Yang & Shen 2009, 2010; Yang, Deng & Shen 2018) and
by parameterizing subgrid-scale processes in large eddy simulations (LES, e.g. Yang,
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Meneveau & Shen 2013; Hara & Sullivan 2015; Hao et al. 2018). When solving for the
atmospheric dynamics, many of these simulations prescribed a static sinusoidal wave
shape while focusing on the evolution of the wind field, as well as energy and momentum
transfers. Therefore, any wind-induced changes to wave shape were not captured.

While there has been much research regarding wind-induced wave growth, wave shape
has seen relatively little work. Coupled air–water simulations (e.g. Liu et al. 2010; Hao
& Shen 2019) and two-phase (air and water) simulations (e.g. Deike, Pizzo & Melville
2017; Zou & Chen 2017) have begun incorporating dynamically evolving waves into
their analyses. These directly model the evolution of both the air and wave fields in a
coupled manner in contrast to simulations prescribing a fixed wave shape. Furthermore,
some also qualitatively consider how wave shape evolves under the influence of wind
(e.g. Yan & Ma 2010; Xie 2014, 2017). However, theses analyses are focused on other
parameters and do not quantify precisely how the wave shape changes. Additionally, there
have been a small number of field measurements (e.g. Cox & Munk 1956) and laboratory
experiments (Leykin et al. 1995; Feddersen & Veron 2005) that have directly investigated
how wind affects wave shape. It was found that the skewness and asymmetry depended
on wind speed for mechanically generated waves in relatively deep (Leykin et al. 1995)
or intermediate and shallow (Feddersen & Veron 2005) water. In particular, the wave
asymmetry (Leykin et al. 1995), skewness (Cox & Munk 1956) and energy ratio of the first
harmonic (frequency 2f ) to the primary wave (frequency f ) (Feddersen & Veron 2005) all
increased with wind speed. It would be beneficial to develop a theory that explains these
experimental findings.

In this paper, we develop a theory coupling wind to dynamically evolving intermediate-
and deep-water waves (kh ≥ 1 with k the wavenumber and h the water depth). We
consider the fluid domain beneath a periodic, progressive wave that is forced by a
prescribed, wave-dependent surface pressure profile. That is, the atmosphere is not treated
dynamically. Determining the wind’s effect on wave shape requires a nonlinear theory.
As the surface boundary conditions for gravity waves are nonlinear, the equations are
solved using a multiple-scale perturbation analysis where the wave steepness ε := a1k
(with a1 the primary wave’s amplitude) is small and new, slower time scales are introduced
over which the nonlinearities act (see, for example, Ablowitz 2011). This formalism has
been used to derive the canonical Stokes waves, which are periodic, progressive waves of
permanent form in intermediate and deep water (Stokes 1880). By introducing a surface
pressure-forcing term, we will derive solutions of the form

η = a1 exp(i(kx − ωt))+ a2 exp(i[2(kx − ωt)+ β])+ . . . , (1.1)

with the real part implied. Here, η is the wave height, ω is the complex wave frequency
and a1k = ε and a2k = O(ε2) are the non-dimensional amplitudes of the primary wave and
first harmonic, respectively. We have defined a new parameter, the ‘harmonic phase’ (or
HP) β, which is analogous to the biphase, a statistical tool (Elgar & Guza 1985). Both wave
skewness and asymmetry depend on the HP β and relative harmonic amplitude a2/(a2

1k).
For example, both skewness and asymmetry are zero for linear waves with a2/(a2

1k) =
0. For deep-water (kh � 1) Stokes waves without wind forcing, a2/(a2

1k) = 1/2 gives
non-zero skewness, but β = 0 yields no phase difference between the primary wave and
first harmonic in (1.1). Indeed, unforced Stokes waves are exactly symmetric at all orders
(Toland 2000).

Three surface pressure profiles, derived from the theories of Jeffreys (1925) and Miles
(1957), are included in the perturbation expansion. Using the method of multiple scales,
Stokes wave-like solutions are derived, giving the wave-shape (via a2/(a2

1k) and β)
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903 A31-4 T. Zdyrski and F. Feddersen

dependence on the wind-induced surface pressure profile. Additionally, wave growth will
result from the fact that Im{ω} is no longer zero (e.g. Miles 1957). These solutions reduce
to unforced Stokes waves when the pressure forcing vanishes.

In § 2, we set up the equations and define the different pressure profiles used. Section 3
begins the general derivation covering a range of realistic pressure magnitudes, which
is continued in appendix A. As a key aspect to the derivation, the non-dimensional
pressure p′ is included in the leading-order equations ( p′ = O(ε)), which is the most
general approach by allowing the substitution of p′ → εp′ or p′ → ε2p′, generating weaker
p′ = O(ε2) and p′ = O(ε3) solutions (cf. appendix A.6). Section 4 details the results of this
analysis. In § 5, we clarify the solutions’ time scale validity, relate the pressure parameters
to LES simulations, compare our results to laboratory observations and compare the
surface pressure form with existing data. Appendix A extends the general derivation to
higher orders in ε to demonstrate a weak amplitude dependence of the shape parameters.

2. Theoretical background

2.1. Governing equations
Here, we specify the equations governing the water dynamics. Homogeneous,
incompressible fluids satisfy the incompressible continuity equation,

∇ · u = 0, (2.1)

within the fluid. We assume irrotational flow and write the water velocity u in terms of
a velocity potential φ as u = ∇φ. We define a coordinate system with z = 0 at the initial
mean water level, positive z upward and gravity pointing in the −z direction. We assume
planar wave propagation in the +x direction and uniform in the y direction. Then, the
incompressibility condition becomes Laplace’s equation,

∂2φ

∂x2
+ ∂2φ

∂z2
= 0. (2.2)

Assuming uniform water depth with a flat bottom located at z = −h, we impose a
no-flow bottom boundary condition

∂φ

∂z
= 0 at z = −h. (2.3)

Finally, the standard surface boundary conditions (e.g. Whitham 2011) are the kinematic
boundary condition

∂φ

∂z
= ∂η

∂t
+ ∂φ

∂x

∂η

∂x
at z = η, (2.4)

and the dynamic boundary condition

0 = p
ρw

+ gη + ∂φ

∂t
+ 1

2

(
∂φ

∂x

2

+ ∂φ

∂z

2)
at z = η. (2.5)

Here, g is the acceleration due to gravity, ρw the water density, η(x, t) the surface profile
and p(x, t) the surface pressure evaluated at z = η. Note that we have absorbed the
Bernoulli constant from (2.5) into φ using its gauge freedom φ → φ + f (t) for arbitrary
f (t). In § 2.3 we specify the surface pressure profiles.
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Wind-induced wave shape changes in deep–intermediate water 903 A31-5

2.2. Assumptions
Our analysis is characterized by a number of non-dimensional parameters. The wave slope
ε := a1k, assumed small, will order our perturbation expansion. Additionally, we will
restrict our attention to intermediate and deep water by requiring that the non-dimensional
depth kh � 1 so that the Ursell parameter is small, ε/(kh)3 � 1. An additional parameter
is the non-dimensional surface pressure magnitude induced by the wind discussed in §§ 2.3
and 2.4. We seek waves with wavelength λ := 2π/k travelling in the x direction that are
periodic in x and quasi-periodic in t

η(x, t) = η(x + λ, t) = η(θ, t) and φ(x, z, t) = φ(x + λ, z, t) = φ(θ, z, t), (2.6a,b)

with θ defined for right-propagating waves (Re{ω(t)} > 0) as

θ := kx −
∫

Re{ω(t)} dt , (2.7)

which is analogous to the standard kx − Re{ω}t, but allows for a complex, time-dependent
frequency ω(t). Additionally, we neglect surface tension σ by restricting to wavelengths
λ� 2 cm, implying a large Bond number (ρg/k2σ � 1). Furthermore, we assume no
mean Eulerian current. Finally, we seek a solution of a single primary wave and its bound
harmonics. Including additional primary waves permits us to study the wind’s effect on
sideband instabilities (e.g. Brunetti & Kasparian 2014) but is beyond the scope of this
work.

In the dynamic boundary condition (2.5), we incorporated the normal stress (surface
pressure) but neglected the shear stress as it is usually significantly smaller than the
normal stress (e.g. Kendall 1970; Hara & Sullivan 2015; Husain et al. 2019). Additionally,
we note that surface shear stresses cause a slight thickening of the boundary layer,
which is equivalent to a pressure phase shift on the remainder of the water column
(Longuet-Higgins 1969). Therefore, we can include the effect of shear stresses through
a phase shift in the pressure relative to the wave profile. Hence, in this investigation we
only consider pressures acting normal to the wave surface.

The irrotational assumption was motivated by our assumption that vorticity-generating
wind shear stresses are small. Additionally, any such vorticity is constrained to a thin
boundary layer just below the wave surface (Longuet-Higgins 1969). Finally, viscous
forces vanish – necessary for Bernoulli’s equation (2.5) – for any flow that is both
irrotational and incompressible (with constant viscosity; e.g. Fang (2019)). Thus, we will
assume irrotational, inviscid flow throughout the fluid interior.

2.3. Surface pressure profiles
Here, we define the surface pressure profiles used in the analysis. The Jeffreys (1925)
theory yields a (‘Jeffreys’) surface pressure profile,

pJ(x, t) = sρaU2 ∂η(x, t)
∂x

, (2.8)

with ρa the air density, U a characteristic wind speed and s an empirical, unitless constant.
Although the Miles mechanism is now favoured for gently sloping waves or weak winds
(Tian & Choi 2013), the Jeffreys mechanism is still relevant for steep, strongly forced
waves (e.g. Touboul & Kharif 2006). The simple, analytic form of the Jeffreys forcing also
lends itself well to theoretical treatments. Indeed, many treatments (e.g. Banner & Song

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CS
D

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

, o
n 

18
 M

ar
 2

02
1 

at
 1

9:
56

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.628
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


903 A31-6 T. Zdyrski and F. Feddersen

2002; Kalmikov 2010; Brunetti et al. 2014) approximate the Miles forcing by a wave slope
coherent pressure p ∝ ∂η/∂x equivalent to our Jeffreys-type forcing (2.8).

The Miles (1957) theory of wind–wave growth gives a (‘Miles’) surface pressure profile
of the form

pM(x, t) =
(
α̃ + iβ̃

)
ρaU2kηa(x, t), (2.9)

with α̃ and β̃ empirical, unitless constants. Additionally, ηa the analytic representation of
η, where the analytic representation of a real function f (x) is f (x)+ if̂ (x) with f̂ (x) the
Hilbert transform of f (x) (for our purposes, only two representations will be relevant: the
analytic representation of cos(x) is exp(ix) and that of sin(x) is −i exp(ix)). This theory
was developed for a linear, sinusoidal (i.e. primary) wave without harmonics. Note that
(2.9) shifts each harmonic exp(imkx) by the same phase, tan−1(β̃/α̃), but by a different
distance, m tan−1(β̃/α̃)/k, distorting the pressure profile relative to η. This pressure profile
gives no wave-shape change at leading order (appendix A.5) and, since wind-induced
shape changes have been observed experimentally, they will not be discussed further here.

Another suitable generalization, capturing the motivation behind the Miles profile, is
specifying the surface pressure as phase shifted relative to η. This prescription is more
appropriate for nonlinear waves since all harmonics are shifted the same distance. Thus,
we define another (‘generalized Miles’) surface pressure profile as

pG(x, t) = rρaU2kη(kx + ψP, t), (2.10)

with r a new, unitless constant and a new parameter, the ‘wind phase’ ψP, which
corresponds to the phase shift between the wave and pressure profile, has been introduced.
As the surface pressure is elevated on the wave’s windward (relative to the leeward) side,
ψP > 0 corresponds to wind blowing from the left, assuming ψP ∈ (−π,π]. Note that the
wind phase ψP is a free parameter for the pressure profile. Although ψP likely depends on
other factors such as wave age, determining such a relationship is outside the scope of this
work. For a single primary wave, we treat ψP as a fixed parameter (for a given wind speed)
which is assumed known – possibly from experiments or simulations (cf. § 5.2).

To facilitate comparison, the various pressure profiles are written in a common form.
Inspired by similarities in (2.8)–(2.10), we define a non-negative pressure magnitude
constant, P, which implicitly encodes the wind speed. For instance, (2.8)–(2.10) suggest

P ∝ ρaU2, (2.11)

although this form serves only as motivation, and the particular U dependence will be
immaterial to our analysis. Since the definition of ε := a1k implies k|η| = O(ε), we see
from the various definitions (2.8)–(2.10) that

O(|p|) = O(εP). (2.12)

We will define PJ for the Jeffreys profile such that

pJ(x, t) = ±PJ
∂η(x, t)
∂x

, (2.13)

with the plus sign for wind blowing from the left. Likewise, we will rewrite the generalized
Miles profile as

pG(x, t) = PGkη(kx + ψP, t). (2.14)

The constant P is subscripted to denote Jeffreys (PJ) or generalized Miles (PG) when the
distinction is relevant. In § 3, these two surface pressure profiles, (2.13) and (2.14), are
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Wind-induced wave shape changes in deep–intermediate water 903 A31-7

expanded in a Fourier series to yield simpler equations. Expanding an arbitrary function
f (x) in a Fourier series as the real part of f (x) =∑m=0 f̂m exp(imkx) with m ∈ N yields

p̂J,m(t) = ±ikmPJη̂m(t), (2.15)

p̂G,m(t) = kPG exp(imψP)η̂m(t). (2.16)

Therefore, we will generically write

p̂m(t) = kP̂mη̂m(t), (2.17)

with P̂m = mPJ exp(iψP) and ψP = ±π/2 for Jeffreys and P̂m = PG exp(imψP) for
generalized Miles profiles. Although we highlight these two forcing profiles, we stress the
derivation’s generality. The results apply to any pressure profile (2.17) that results from a
convolution of η(x, t) with a time-independent function f (x), each yielding a specific P̂m.
For example, P̂m could be chosen to match numerical simulations (cf. § 5.4).

To make these definitions concrete and contrast the different forcing types, a deep-water,
second-order Stokes wave

kη(θ) = ε cos(θ)+ 1
2
ε2 cos(2θ) (2.18)

is shown for ε = 0.2 in figure 1(a) with phase θ = kx − ωt. The Stokes wave profile is
used to compute both (unity normalized) surface pressure profiles (figure 1b). These two
pressure profiles, (2.13) and (2.14), are largely similar to each other, although differences
arise due to the Stokes wave harmonics. The derivative in the Jeffreys profile (blue
figure 1b) multiplies each Fourier harmonic by its wavenumber, mk, enhancing higher
frequencies. In contrast, the wind phase ψP, measured left from θ = 0 to the pressure
maximum, shifts the entire pressure waveform relative to the surface waveform η for the
generalized Miles profile (orange, figure 1b). The LES numerical simulations of Hara &
Sullivan (2015) and Husain et al. (2019) show ψP ≈ 3π/4 for a variety of wind speeds
(§ 5.2). However, in figure 1(b), ψP = π/2 is chosen for the generalized Miles profiles to
facilitate comparison with the Jeffreys case (for which ψP = ±π/2).

2.4. Determination of pressure magnitude P
We will use existing experimental data to determine the magnitude of P in various
contexts. Assuming a logarithmic wind profile, Miles (1957) derived the wave-energy
growth rate γ , normalized by the (unforced, linear, deep-water) wave frequency f ∞

0 , for
the pressure profile pM (2.14)

γ

f ∞
0

= 2πβ̃
ρa

ρw

U2

(c∞
0 )

2
= 2π

PG

ρw(c∞
0 )

2
sin(ψP), (2.19)

where, c∞
0 = √

g/k is the unforced, linear, deep-water phase speed, ρw is the water density
and (2.11) is used to define PG. Using the value ψP = 3π/4 from Hara & Sullivan (2015)
and Husain et al. (2019) gives PGk/(ρwg) = 0.23

(
γ /f ∞

0

)
.

Furthermore, we use empirical data relating wind speed U to growth rate to constrain
the PG pressure magnitude constant in deep water. Figure 2 shows the energy growth rate
γ /f ∞

0 as a function of inverse wave age, u∗/c∞
0 with u∗ the friction velocity. The empirical

observations of γ /f ∞ versus u/c∞ in deep water collapse onto a curve permitting a
conversion from u∗/c∞

0 to γ /f ∞
0 and yielding PGk/(ρwg) (2.19).
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FIGURE 1. (a) Non-dimensional, right-propagating Stokes wave kη (2.18) as a function of phase
θ = kx − ωt with ε = 0.2. (b) Normalized surface pressure profiles p(θ) as described in (2.13)
and (2.14); see legend. The maximum pressure magnitude is normalized to unity (arbitrary units),
and a value of ψP = π/2 was chosen to facilitate comparison with the Jeffreys profile with ψP
positive corresponding to wind blowing to the right.
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FIGURE 2. Non-dimensional, deep-water wave-energy growth rate γ /f ∞
0 versus inverse wave

age, u∗/c∞
0 with u∗ the wind’s friction velocity and c∞

0 = √
g/k the unforced, linear, deep-water

phase speed. The filled symbols represent laboratory measurements while the hollow symbols
represent field measurements (from Komen et al. 1994). The solid line represents the fit
parameterized by Banner & Song (2002).
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Here, we consider |p|k/(ρwg) = O(ε) to O(ε3), or Pk/(ρwg) = O(1) to O(ε2) – cf.
(2.12). If we assume ε ≈ 0.1, ψP ≈ 3π/4 and ρa/ρw = 1.225 × 10−3, then (2.19) shows
we are considering growth rates γ /f ∞

0 ≈ 4 × 10−2 to 4. Referring to figure 2, we see
these reside mostly in the laboratory measurement regime, corresponding to u∗/c∞

0 ≈
5 × 10−1 to 5. We can approximate U10 using logarithmic boundary layer theory (e.g.
Monin & Obukhov 1954)

u∗ = κU10

ln[(10 m)/z0]
, (2.20)

with κ ≈ 0.4 the von Kármán constant and z0 ≈ 1.4 × 10−5 the surface roughness
parameter for 2 m long, 0.1 m high deep-water waves, as one might have in a wave tank
(Taylor & Yelland 2001). Substituting these values, we find

U10 ≈ 34u∗, (2.21)

yielding U10/c∞
0 ≈ 1 × 101 to 1 × 102, or U10 ≈ 3 × 101 m s−1 to 3 × 102 m s−1 assuming

a deep-water dispersion relation.
It is interesting to examine the pressure-forcing magnitudes used previously. Phillips

(1957) modelled wave growth using a different mechanism, but the pressure forcing
was included at the same order as η. That is, |p|k/(ρwg) = O(ε), or Pk/(ρwg) = O(1),
implying γ /f ∞

0 = O(1). Referring to figure 2, this corresponded to strongly forced waves
and a fast wind (u∗/c∞

0 = O(1)). Other theoretical works have used |p|k/(ρwg) = O(ε2)

(e.g. Janssen 1982; Brunetti & Kasparian 2014; Brunetti et al. 2014) or |p|k/(ρwg) = O(ε3)
(e.g. Leblanc 2007; Kharif et al. 2010; Onorato & Proment 2012), corresponding to
Pk/(ρwg) = O(ε) and Pk/(ρwg) = O(ε2), respectively. Thus, the choices of Pk/(ρwg) =
O(1) to O(ε2) are all relevant in the literature.

2.5. Multiple-scale expansion
As mentioned in § 2.2, we will utilize an asymptotic expansion in the small wave slope ε :=
a1k to prevent secular terms in this singular perturbation expansion. While nonlinear wave
theories often use an ordinary Stokes expansion (i.e. a Poincaré–Lindstedt, or strained
coordinate, expansion), this does not permit the complex frequencies required for wave
growth. Instead, we employ the method of multiple scales and replace t by a series of
slower time scales depending on ε such that t0 = t, t1 = t/ε, etc, yielding

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
+ . . . . (2.22)

Additional time scales t2 and t3, inversely proportional to ε2 and ε3 respectively,
are required in the O(ε4) derivation of appendix A. This is exclusively a temporal
multiple-scale expansion. While a spatial multiple-scale analysis would also permit the
study of surface pressure effects on modulational instabilities (Brunetti & Kasparian 2014),
we solely focus on the wind-induced shape change of a single wave.

As discussed in § 2.4, the non-dimensional pressure forcing can have magnitudes
ranging from Pk/(ρwg) = O(1) to O(ε2). Writing Pk/(ρwg) = O(εn) for n = 0 to 2, we
will show that the derivation must be solved to O(εn+2) to demonstrate shape change.
Many theoretical treatments using Pk/(ρwg) = O(ε2) only utilize O(ε3) equations like
the nonlinear Schröedinger (NLS) equation (e.g. Kharif et al. 2010; Onorato & Proment
2012) or Davey–Stewartson equation (e.g. Leblanc 2007). Therefore, no shape change
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903 A31-10 T. Zdyrski and F. Feddersen

would be derived without going to higher order. In contrast, both Brunetti et al. (2014)
and Brunetti & Kasparian (2014) coupled a moderately strong wind Pk/(ρwg) = O(ε)
to a slowly varying wave train and derived an O(ε3) forced NLS equation. Although
solved at sufficiently high order to show wind-induced shape changes, neither reported
results for the first harmonic. Instead, these focused on wind-forced wave packet evolution,
with Brunetti et al. (2014) finding various envelope solitons for the primary wave and
Brunetti & Kasparian (2014) deriving an enhancement of the primary wave’s modulational
instability.

In § 3 and appendix A, we include the pressure in the leading-order equations, i.e.
Pk/(ρwg) = O(1), which is the most general case. The leading-order contributions to the
shape parameters β and a2/(a2

1k) are found at O(ε2), while the higher-order corrections
occur at O(ε4) (appendix A). From the full O(ε4) solution, shape changes for Pk/(ρwg) =
O(ε) or Pk/(ρwg) = O(ε2) can be found by substituting P → εP or P → ε2P, respectively
(cf. appendix A.6).

2.6. Non-dimensionalization
Non-dimensional systems are useful in perturbation expansions. Here, a standard
non-dimensionalization (e.g. Mei, Stiassnie & Yue 2005) is performed by defining new
non-dimensional, order-unity primed variables

x = x ′

k
,

t = t′√
gk
,

z = z′

k
,

h = h′

k
,

η = ε
η′

k
,

Φ = εΦ ′
√

g
k3
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.23)

Notice the ε factor in the equations for η and φ since these are assumed small. Unlike in
the standard Stokes wave problem, the surface pressure must also be non-dimensionalized.
As shown in (2.12), O(|p|) = εO(P). Thus, we find p and P (as well as their Fourier
transforms) are non-dimensionalized by

( p, p̂) = O
(
εPk
ρwg

)
ρwg

k

(
p′, p̂′) , (2.24)

(P, P̂m) = O
(

Pk
ρwg

)
ρwg

k

(
P′, P̂′

m

)
, (2.25)

with p′(x, t) and P′ (as well as their Fourier transforms) now order unity and
dimensionless. For the remainder of the paper, primes will be dropped and all variables
will be assumed non-dimensional and order unity, except where explicitly stated.

3. Derivation of wave-shape parameters

We now couple a prescribed surface pressure profile (2.17) to the nonlinear wave
problem (2.2)–(2.5) to derive the wind’s effect on wave shape. In this section, we will
ultimately find an expression for the non-dimensional surface profile of the form

η = εA1(t1, . . .) exp(i(x − ω0t0))+ ε2A2(t1, . . .) exp(i[2(x − ω0t0)+ β])+ . . . , (3.1)

where the real part is implied and ω0 is the leading-order approximation to ω defined in
(2.7). Note that we are not assuming this as a functional form for η, but are only giving
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a preview of our final result. A comparison of non-dimensional (3.1) with dimensional
(1.1) shows we will have (ignoring the time dependence; cf. appendix A.4) a1 = εA1, a2 =
ε2A2/k, etc, so A2/A2

1 = a2/(a2
1k). Both the HP β and a2/a2

1 encode information about the
wave shape. We take the ratio a2/a2

1 because we will find that a2 ∝ exp(2 Im{ω0}t0) while
a1 ∝ exp(Im{ω0}t0). As we are mainly interested in the shape, the growth is removed by
using the ratio a2/a2

1.
Now, expanding our non-dimensional variables in an asymptotic series of ε, we have

η =
∞∑

n=1

εnηn(x, t0, t1, . . .), (3.2)

φ =
∞∑

n=1

εnφn(x, z, t0, t1, . . .), (3.3)

p =
∞∑

n=1

εnpn(x, t0, t1, . . .). (3.4)

Choosing Pk/(ρwg) = O(1) gives p1 /= 0. Laplace’s equation (2.2) and the bottom
boundary condition (2.3) are linear and – unlike when spatial multiple scales are employed
(e.g. Mei et al. 2005) – can be satisfied identically. Laplace’s equation is solved via
a Fourier transform and, with the bottom boundary condition, has solution (real part
implied)

φn(x, z, t0, t1, . . .) = φ̂n,0(t0, t1, . . .)+ cosh[m(z + h)]
sinh(mh)

exp(imx)φ̂n,m(t0, t1, . . .), (3.5)

with arbitrary m ∈ N>0 and arbitrary functions φ̂n,0(t0, t1, . . .) and φ̂n,m(t0, t1, . . .). Note
that we imposed the no-mean-current condition by choosing 〈u〉 = 〈∂xφ〉 = 0 at each order
n, with 〈·〉 the spatial average over one wavelength. Furthermore, to express the surface
pressure profile pn in terms of the surface height ηn (cf. (2.17)), all variables are written as
Fourier series

ηn(x, t0, t1, . . .) =
m=n∑
m=0

exp(imx)η̂n,m(t0, t1, . . .), (3.6)

φn(x, z, t0, t1, . . .) =
m=n∑
m=1

exp(imx)φ̂n,m(t0, t1, . . .)
cosh(m(z + h))

sinh(mh)
+ φ̂n,0(t0, t1, . . .),

(3.7)

pn(x, t0, t1, . . .) =
m=n∑
m=0

exp(imx)p̂m,n(t0, t1, . . .). (3.8)

Aside from the pressure expansion, this follows the standard Stokes expansion
methodology (e.g. Ablowitz 2011). Other texts, such as Mei et al. (2005), treat the Stokes
expansion using both slow time and spatial scales, but such spatial expansions are outside
the scope of this paper (cf. § 2.2). Recall that we previously related (cf. (2.17)) the Fourier
transform of the surface pressure to the surface profile,

p̂m,n(t0, t1, . . .) = P̂mη̂m,n(t0, t1, . . .). (3.9)

Thus, p has higher-order corrections because η has higher-order Stokes-like corrections.
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We now expand the kinematic (2.4) and dynamic (2.5) boundary conditions in ε and
collect terms order by order.

O(ε) :

∂η1

∂t0
− ∂φ1

∂z
= 0, (3.10)

η1 + ∂φ1

∂t0
+ p1 = 0, (3.11)

O(ε2) :

∂φ2

∂z
− ∂η2

∂t0
= ∂η1

∂t1
+ ∂η1

∂x

∂φ1

∂x
− η1

∂2φ1

∂z2
, (3.12)

η2 + ∂φ2

∂t0
+ p2 = −∂φ1

∂t1
− η1

∂φ1

∂zt0
− 1

2

(
∂φ1

∂x

)2

− 1
2

(
∂φ1

∂z

)2

, (3.13)

O(ε3) :

∂φ3

∂z
− ∂η3

∂t0
= ∂η2

∂t1
+ ∂η1

∂t2
+ ∂η2

∂x

∂φ1

∂x
+ ∂η1

∂x

∂φ2

∂x
+ η1

∂η1

∂x

∂2φ1

∂z∂x
− η1

∂2φ2

∂z2

− 1
2
η2

1
∂3φ1

∂z3
− η2

∂2φ1

∂z2
, (3.14)

η3 + ∂φ3

∂t0
+ p3 = −∂φ1

∂t2
− ∂φ2

∂t1
− 1

2
η2

1
∂3φ1

∂z2∂t0
− η1

∂2φ2

∂z∂t0
− η2

∂2φ1

∂z∂t0

− η1
∂2φ1

∂z∂t1
− ∂φ1

∂x

∂φ2

∂x
− η1

∂φ1

∂x

∂2φ1

∂x∂z
− ∂φ1

∂z
∂φ2

∂z
− η1

∂φ1

∂z
∂2φ1

∂z2
,

(3.15)

O(ε4) :

∂φ4

∂z
− ∂η4

∂t0
= −∂η1

∂t3
− ∂η2

∂t2
− ∂η3

∂t1
− ∂η1

∂x

∂φ3

∂x
− ∂η2

∂x

∂φ2

∂x
− ∂η3

∂x

∂φ1

∂x
+ η3

∂2φ1

∂z2

−
(
∂η1

∂x

∂2φ1

∂x∂z
− ∂2φ2

∂z2

)
η2 −

(
∂η1

∂x

∂2φ2

∂x∂z
+ ∂η2

∂x

∂2φ1

∂x∂z
− ∂2φ3

∂z2

)
η1 + ∂3φ1

∂z3
η1η2

−
(

1
2
∂η1

∂x

∂2φ1

∂x∂z
− 1

2
∂3φ2

∂z3
η2

1 − 1
6
∂4φ1

∂z4
η3

1

)
, (3.16)

η4 + ∂φ4

∂t0
+ p4 = −∂φ1

∂t3
− ∂φ2

∂t2
− ∂φ3

∂t1
− ∂φ1

∂x

∂φ3

∂x
− 1

2

(
∂φ2

∂x

)2

− ∂φ1

∂z
∂φ3

∂z

− 1
2

(
∂φ2

∂z

)2

− ∂2φ1

∂t0∂z
η3 −

(
∂2φ1

∂t1∂z
+ ∂2φ2

∂t0∂z
+ ∂φ1

∂x

∂2φ1

∂x∂z
+ ∂φ1

∂z
∂2φ1

∂z2

)
η2

−
(
∂2φ1

∂t2∂z
+ ∂2φ2

∂t1∂z
+ ∂2φ3

∂t0∂z
+ ∂φ1

∂x

∂2φ2

∂x∂z
+ ∂φ2

∂x

∂2φ1

∂x∂z
+ ∂φ1

∂z
∂2φ2

∂z2
+ ∂φ2

∂z
∂2φ1

∂z2

)
η1
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Wind-induced wave shape changes in deep–intermediate water 903 A31-13

− ∂2φ1

∂t0∂z
η1η2 −

(
1
2
∂2φ1

∂t1∂z
+ 1

2
∂2φ2

∂t0∂z
+ 1

2
∂φ1

∂x

∂2φ1

∂x∂z
+ 1

2

(
∂2φ1

∂x∂z

)2

+ 1
2
∂φ1

∂z
∂3φ1

∂z3

+1
2

(
∂2φ1

∂z2

)2
)
η2

1 − 1
6
∂2φ1

∂t0∂z
η3

1. (3.17)

We solve these equations to O(ε2) here and O(ε4) in appendix A.

3.1. The O(ε) equations
Proceeding to first order in ε, the linearized boundary conditions are

∂φ1

∂z
− ∂η1

∂t0
= 0, (3.18)

∂φ1

∂t0
+ η1 + p1 = 0. (3.19)

Inserting the Fourier transforms (3.6)–(3.8) and the pressure profile (2.17) gives

m = 1 Fourier component:

φ̂1,1 − ∂η̂1,1

∂t0
= 0, (3.20)

∂φ̂1,1

∂t0
coth(h)+ η̂1,1 + P̂1η̂1,1 = 0, (3.21)

m = 0 Fourier component:

−∂η̂1,0

∂t0
= 0, (3.22)

∂φ̂1,0

∂t0
+ η̂1,0 + P̂0η̂1,0 = 0. (3.23)

The m = 0 Fourier equations are solved by η̂1,0 = φ̂1,0 = 0 when placing the initial mean
water level 〈η〉 at z = 0. Combining the m = 1 equations (3.20) and (3.21) to eliminate
η̂1,1 gives

∂2φ̂1,1

∂t2
0

coth(h)+
(

1 + P̂1

)
φ̂1,1 = 0. (3.24)

This is the usual, finite-depth, linear operator on φ̂1,1 modified by the presence of P̂1,
showing that φ̂1,1(t0, t1, . . .) is harmonic. Using a bit of foresight to define the constants,
we write

φ̂1,1 = −iω0A1(t1) exp(−iω0t0), (3.25)

giving

φ1 = −iω0A1(t1) exp(i(x − ω0t0))
cosh(z + h)

sinh(h)
, (3.26)
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903 A31-14 T. Zdyrski and F. Feddersen

where

ω0 = ±
√

tanh(h)
(

1 + P̂1

)
. (3.27)

We choose the (+) sign, corresponding to waves propagating to the right. While A1(t1)

and exp(−iω0t0) always appear together and could be simply left as a single, t0-dependent
variable A(t0, t1) ∈ C, we find it instructive to explicitly write the t0-dependence. Inserting
this into the surface boundary conditions gives equations for η1,

∂η̂1

∂t0
= −iω0A1(t1) exp(−iω0t0), (3.28)

η̂1 + P̂1η̂1 = coth(h)ω2
0A1(t1) exp(−iω0t0). (3.29)

This gives
η1 = A1(t1) exp(i(x − ω0t0)). (3.30)

It is instructive to consider the real and imaginary parts of ω0

Re{ω0} =
√

tanh(h)
2

√
1 + Re

{
P̂1

}
+
√

1 +
∣∣∣P̂1

∣∣∣2 + 2 Re
{

P̂1

}
, (3.31)

Im{ω0} = sgn
(

Im
{

P̂1

})√ tanh(h)
2

√
−1 − Re

{
P̂1

}
+
√

1 +
∣∣∣P̂1

∣∣∣2 + 2 Re
{

P̂1

}
. (3.32)

Notice that the pressure causes growth (Im{ω0} > 0) for wind in the direction of the waves
(Im{P̂1} > 0) and decay (Im{ω0} < 0) for opposing wind (Im{P̂1} < 0). Likewise, observe
that an applied pressure, P̂1 /= 0, modifies the dispersion relation (3.31). This phenomenon
was also derived by Jeffreys (1925) and Miles (1957) for Pk/(ρwg) = O(ε), which we can
reproduce by substituting P̂1 → εP̂1 in (3.31) and (3.32).

3.2. The O(ε2) equations
Proceeding to second order, the kinematic and dynamic boundary conditions are

∂φ2

∂z
− ∂η2

∂t0
= ∂η1

∂t1
+ ∂η1

∂x

∂φ1

∂x
− η1

∂2φ1

∂z2
, (3.33)

∂φ2

∂t0
+ η2 + p2 = −∂φ1

∂t1
− η1

∂2φ1

∂z∂t0
− 1

2

(
∂φ1

∂x

)2

− 1
2

(
∂φ1

∂z

)2

. (3.34)

By inserting the Fourier transforms (3.6)–(3.8), we can express p2 using (3.9). Inserting
the first-order solutions (3.26) and (3.30) and collecting harmonics yields

m = 1 Fourier component:

φ̂2,1 − ∂η̂2,1

∂t0
= ∂A1

∂t1
exp(−iω0t0), (3.35)

∂φ̂2,1

∂t0
coth(h)+ (1 + P̂1)η̂2,1 = iω0

∂A1

∂t1
exp(−iω0t0) coth(h), (3.36)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CS
D

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

, o
n 

18
 M

ar
 2

02
1 

at
 1

9:
56

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.628
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wind-induced wave shape changes in deep–intermediate water 903 A31-15

m = 2 Fourier component:

2φ̂2,2 − ∂η̂2,2

∂t0
= iω0A2

1 exp(−2iω0t0) coth(h), (3.37)

∂φ̂2,2

∂t0
coth(2h)+ (1 + P̂2)η̂2,2 = 1

4
ω2

0A2
1 exp(−2iω0t0)

(
2 − csch2(h)

)
, (3.38)

m = 0 Fourier component:

−∂η̂2,0

∂t0
= 0, (3.39)

∂φ̂2,0

∂t0
+ η̂2,0 = 1

4

(
2 Re

{
ω2

0

}− |ω0|2
(
2 + csch2(h)

))|A1|2|exp(−iω0t0)|2. (3.40)

Eliminating the various η̂2,m to get equations solely in terms of φ̂2,m gives

m = 1 Fourier component:

∂2φ̂2,1

∂t2
0

coth(h)+ (1 + P̂1)φ̂2,1 = 2
(

1 + P̂1

)∂A1

∂t1
exp(−iω0t0), (3.41)

m = 2 Fourier component:

∂2φ̂2,2

∂t2
0

coth(2h)+ 2(1 + P̂2)φ̂2,2 = −i
1
2
ω0A2

1

{[
2 − csch2(h)

]
ω2

0

−2
(

1 + P̂2

)
coth(h)

}
exp(−2iω0t0), (3.42)

m = 0 Fourier component:

∂2φ̂2,0

∂t2
0

= 1
2
(2 Re

{
ω2

0

}− |ω0|2(2 + csch2(h)))|A1|2 exp(2 Im{ω0}t0) Im{ω0}. (3.43)

Preventing secular terms in φ̂2,1 requires that ∂t1 A1 = 0. This is consistent with standard,
unforced Stokes waves: Stokes corrections to the unforced wave frequency first occur at
O(ε2), meaning we would only expect A1 to have a t2-dependence (which we also observe,
cf. appendix A.1). Solving (3.41)–(3.43) for φ̂2,m and transforming back to φ2 via (3.5)
gives

φ2 = i
ω0

4
A2

1 coth(h)
(2 − csch2(h))ω2

0 − 2[1 + P̂2] coth(h)

(2 + csch2(h))ω2
0 − [1 + P̂2] coth(h)

exp(2i(x − ω0t0))

× cosh[2(z + h)]
sinh(2h)

+ 1
8 Im{ω0}(2 Re

{
ω2

0

}− |ω0|2(2 + csch2(h))|A1|2

× (exp(2 Im{ω0}t0)− 1). (3.44)

We have included a constant term −1 in exp(2 Im{ω0}t0)− 1 so that φ2 remains finite if
P → 0 (i.e. Im{ω0} → 0). We have also dropped the homogeneous solution, which would
only amount to redefining the linear solution, A1.
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903 A31-16 T. Zdyrski and F. Feddersen

The surface boundary conditions are now solely equations for η̂2,m

∂η̂2,2

∂t0
= −i

1
2
ω3

0A2
1 exp(−2iω0t0)

(2 + 3 csch2(h)) coth(h)

(2 + csch2(h))ω2
0 − [1 + P̂2] coth(h)

, (3.45)

[1 + P̂2]η̂2,2 = 1
4

[
1 + P̂2

]
A2 exp(−2iω0t0)

(2 + 3 csch2(h)) coth(h)ω2
0

(2 + csch2(h))ω2
0 − [1 + P̂2] coth(h)

, (3.46)

and η̂2,0 = η̂2,1 = 0. These have the solution

η2 = 1
4

A2
1 exp(2i(x − ω0t0))

(
2 + 3 csch2(h)

)
coth(h)

(
1 − coth2(h)

[
P̂2 − P̂1

1 + P̂1

])−1

.

(3.47)

Note that we chose η̂2,0 = 0 since we imposed η̄ = 0 at t = 0 with our choice of the
mean water level as our initial datum in § 2.1. It is interesting to note that, when η̄ = 0
initially, it remains zero for all times. This implies that the mean water level does not
change over time. Another choice of datum occasionally used (e.g. Laitone 1962) is the
mean energy level (MEL), defined such that ∂tφ = 0 (e.g. Song et al. 2013). However, even
if we chose ∂tφ = 0 initially by adding a constant A to η2 and a term −At0 to φ2, (3.44)
shows that the MEL would still vary with time.

Redimensionalizing, we find

η = ε
A1

k
exp(i(x − ω0t0))+ ε2 A2

1

k
exp(2i(x − ω0t0))C2,2 + O(ε3), (3.48)

where the complex C2,2 is the pressure-induced (or wind-induced) correction to the first
harmonic

C2,2 := 1
4

(
2 + 3 csch2(h)

)
coth(h)

(
1 − coth2(h)

[
P̂2 − P̂1

1 + P̂1

])−1

. (3.49)

Note that A2
1

∣∣C2,2

∣∣/k is the quantity denoted A2 in (3.1).
We have now found the primary wave η̂m=1 = εη̂1,m + O(ε3) and first harmonic η̂m=2 =

ε2η̂2,2 + O(ε3). Therefore, the amplitudes of the primary wave and first harmonic are
respectively

a1 := ∣∣η̂m=1

∣∣ = ε
|A1(t2)|

k
exp(Im{ω0}t0)+ O(ε3), (3.50)

a2 := ∣∣η̂m=2

∣∣ = ε2

∣∣A2
1(t2)

∣∣
k

exp(2 Im{ω0}t0)
∣∣C2,2

∣∣+ O(ε3). (3.51)

Hence, in order to cancel the t0-dependence, we define the relative harmonic amplitude
shape parameter as

a2

a2
1k

:=
∣∣∣∣ η̂m=2

η̂2
m=1k

∣∣∣∣. (3.52)

With this definition, (3.48) becomes
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Wind-induced wave shape changes in deep–intermediate water 903 A31-17

η = a1 exp(i(x − Re{ω0}t0))+ a2 exp(i[2(x − Re{ω0}t0)+ β])+ O(ε3), (3.53)

where we have absorbed the complex phase of A1 into exp(ix) (redefining the x = 0
location) and defined the harmonic phase β as the complex angle of η̂m=2/η̂

2
m=1

β := tan−1

(
Im
{
η̂m=2/η̂

2
m=1

}
Re
{
η̂m=2/η̂

2
m=1

}
)
. (3.54)

In general, both β and a2/(a2
1k) will have an expansion in ε since η̂m=2 will have

higher-order corrections. For instance, the HP β has expansion β = β0 + εβ1 + . . ..
Inserting our solution (3.48) into (3.54) gives β0, which is just the complex angle of C2,2
at this order

β0 = tan−1

⎛
⎜⎜⎜⎜⎝

Im

{[
P̂2 − P̂1

1 + P̂1

]}

tanh2(h)− Re

{[
P̂2 − P̂1

1 + P̂1

]}
⎞
⎟⎟⎟⎟⎠

= tan−1

⎛
⎜⎝ Im

{[
P̂2 − P̂1

](
1 + P̂∗

1

)}
∣∣∣1 + P̂1

∣∣∣2 tanh2(h)− Re
{[

P̂2 − P̂1

](
1 + P̂∗

1

)}
⎞
⎟⎠, (3.55)

with an asterisk representing the complex conjugate. Similarly, using (3.52) shows that the
leading-order term of a2/(a2

1k) is just
∣∣C2,2

∣∣
a2

a2
1k

= ∣∣C2,2

∣∣ = 2 + 3 csch2(h)
4

coth(h)

∣∣∣∣∣1 − coth2(h)

[
P̂2 − P̂1

1 + P̂1

]∣∣∣∣∣
−1

. (3.56)

Without wind (P̂1 = P̂2 = 0), C2,2 is real and equals (2 + 3 csch2(h)) coth(h)/4, or 1/2 in
deep water. Thus, P̂1 = P̂2 = 0 reproduces the usual Stokes waves values of a2/(a2

1k) =
1/2 in deep water and β = 0.

Asymmetry and skewness are common shape parameters that depend on β and a2/(a2
1k).

The skewness S and asymmetry A are defined as

S := 〈η3〉
〈η2〉3/2

, (3.57)

A := 〈H{η}3〉
〈η2〉3/2

, (3.58)

with 〈·〉 the spatial average over one wavelength and H{·} the Hilbert transform (in x).
The average of any Fourier component exp(imx) over a wavelength is zero for all m /= 0 ∈
N. Therefore, only combinations wherein the x-dependence cancels will contribute.
Inserting our solution for η (3.53) into the skewness and asymmetry definitions (3.57)
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903 A31-18 T. Zdyrski and F. Feddersen

and (3.58) yields

S = 3√
2
ε|A1| exp(Im{ω0}t0)

a2

a2
1k

cos(β0)+ O(ε2), (3.59)

A = − 3√
2
ε|A1| exp(Im{ω0}t0)

a2

a2
1k

sin(β0)+ O(ε2). (3.60)

By solving the kinematic and dynamic boundary conditions to O(ε2), we have generated
the leading-order terms for β and a2/(a2

1k). We continue this analysis by solving to O(ε4)
in appendix A, deriving the first non-trivial correction to β (A 58), a2/(a2

1k) (A 57) and
the complex frequency ω (A 64). Additionally, going to O(ε4) also extends our solutions
to weaker wind conditions. As outlined in § 2.5, we can substitute P → εP or P → ε2P
to generate shape parameters for weaker winds Pk/(ρwg) = O(ε) or Pk/(ρwg) = O(ε2),
respectively (appendix A.6). In this way, we find the shape parameters’ dependence on our
non-dimensional parameters (kh, ε, P and ψP) and demonstrate weak time and amplitude
dependence over a range of wind conditions from strong Pk/(ρwg) = O(1) to relatively
weak Pk/(ρwg) = O(ε2).

4. Results

Now, we present the main results of this theory. The harmonic phase β, harmonic
magnitudes a1 and a2, and complex frequency ω depend on the four non-dimensional
parameters: the wave steepness ε := a1k, water depth kh, pressure magnitude constant
Pk/(ρwg) and wind phase ψP. To reduce the non-dimensional parameter range, we keep
a fixed ε = 0.2. Recall (§ 2.2) the requirement of ε/(kh)3 ≤ 1, such that the expansion
remains properly ordered, implies kh ≥ 0.5, although we keep kh ≥ 1. Note that taking kh
to ∞ yields solutions on infinite depth. The pressure magnitude constant P is PJ or PG,
corresponding to the choice of pressure profile. For both solutions, taking P → 0 recovers
the unforced Stokes wave.

For the remainder of the paper, we will revert to dimensional variables. In particular,
the pressure constant P is dimensional again and not necessarily order unity. Replacing
the multiple time scales with the true time t in our solution (3.53), we obtain a surface
height profile η of the form

kη = (a1k) exp(iθ)+ (a1k)2
a2

a2
1k

exp(i(2θ + β))+ . . . , (4.1)

with the real part implied and θ defined in (2.7). Note that the growth of the harmonics
means that these solutions are only valid for finite time (cf. § 5.1).

4.1. Harmonic phase, relative harmonic amplitude and wave shape
The wave shape is a function of the harmonic phase β, quantifying the relative phase shift
between the primary wave and first harmonic, and the relative harmonic ratio a2/(a2

1k).
The solutions for these parameters are extended to O(ε2) in appendix A.3, applying to
all pressure profiles satisfying (2.17) with magnitude Pk/(ρwg) = O(1) to O(ε2). We now
specialize these results to the two pressure profiles of interest.

The full, O(ε2)-accurate Jeffreys harmonic phase βJ (A 58) is depicted in figures 3(a),
4(a) and 5(a). To develop a better understanding of its functional dependence, we
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Wind-induced wave shape changes in deep–intermediate water 903 A31-19

can consider simpler, limiting cases. For very small wave steepnesses, ε ≪ 1, the
leading-order correction (3.55) is

βJ = ± tan−1

(
Pk/(ρwg)

tanh2(kh)− sech2(kh)P2k2/(ρ2
wg2)

)
+ O(ε), (4.2)

with the ± corresponding to the sign of ψP = ±π/2 in the pressure profile. If, instead of
assuming ε ≪ 1, we expand (A 58) considering a weak pressure forcing Pk/(ρwg) � 1,
we find

βJ = ± Pk
ρwg

coth2(kh)+ O(ε3). (4.3)

The full, O(ε2)-accurate generalized Miles βG (A 58) is also depicted in figures 3(a), 4(a)
and 5(a). For very small ε ≪ 1, we have the approximation

βG = tan−1

([
2 cos(ψP)− 1 + Pk

ρwg

]
Pk
ρwg

sin(ψP)

[
−
(

Pk
ρwg

)2

cos(ψP)− 1

− Pk
ρwg

(cos(2ψP)+ cos(ψP))+
(

1 + 2
Pk
ρwg

cos(ψP)+
(

Pk
ρwg

)2
)

×(2 − sech2(kh)
)]−1

)
+ O(ε). (4.4)

Instead of requiring ε ≪ 1, we can expand (A 58) while considering a weak pressure
forcing Pk/(ρwg) � 1 to find

βG = Pk
ρwg

(sin(2ψP)− sin(ψP)) coth2(kh)+ 1
2

(
Pk
ρwg

)2

coth4(kh) (sin(4ψP)

−4 sin(3ψP)+ 3 sin(2ψP)+ 2 sech2(kh)[sin(3ψP)− sin(2ψP)]
)+ O(ε3). (4.5)

Next, we consider the relative harmonic amplitude, a2/(a2
1k). The full, O(ε2)-accurate

Jeffreys relative harmonic amplitude (A 57) is shown in figures 3(b), 4(b) and 5(b), but we
can approximate it for very small ε ≪ 1 as (3.56)

(
a2

a2
1k

)
J

= 2 + 3 csch2(kh)
4

coth(kh)

√
1 + P2k2/(ρ2

wg2)

1 + P2k2/(ρ2
wg2) csch4(kh)

. (4.6)

Inserting a weak wind Pk/(ρwg) � 1 in (A 57) instead of requiring ε ≪ 1 yields

(
a2

a2
1k

)
J

= 2 + 3 csch2(kh)
4

coth(kh)

(
1 + 1 − csch4(kh)

2

(
Pk
ρwg

)2
)

+ (a1k)2A + O(ε3),

(4.7)

with A only a function of kh and defined in (A 55). We now have the direct appearance
of the amplitude a1k with an implicit time dependence due to growth. The full,
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FIGURE 3. (a) Harmonic phase β (3.54) and (b) relative harmonic amplitude a2/(a2
1k) (3.52)

versus wind phase ψP. Results are shown for Jeffreys and generalized Miles profiles with kh =∞, ε = 0.2 and pressure magnitude constants Pk/(ρwg) = 0.01, 0.1 and 1, as indicated in the
legend. The Jeffreys βJ is only shown atψP = π/2 as that is its impliedψP. All results are plotted
using the full, O(ε2)-accurate expressions (A 57) and (A 58). The grey lines are the results for
a fourth-order unforced Stokes wave, and the green dotted line represents ψP = 3π/4 used in
many of the other plots and supported by numerical simulations from Hara & Sullivan (2015)
and Husain et al. (2019).

O(ε2)-accurate generalized Miles a2/(a2
1k)G (A 57) is also plotted in figures 3(b), 4(b)

and 5(b). We can simplify a2/(a2
1k)G by assuming a very small wave steepness ε ≪ 1

(
a2

a2
1k

)
G

= 2 + 3 csch2(kh)
4

coth(kh)

∣∣∣∣∣1 − coth2(kh)

[
exp(iψP)− 1

]
Pk/(ρwg)

exp(−iψP)+ Pk/(ρwg)

∣∣∣∣∣
−1

+ O(ε).

(4.8)

Instead of assuming very small ε, we can approximate (A 57) by assuming Pk/(ρwg) � 1
to give(

a2

a2
1k

)
G

= 2 + 3 csch2(kh)
4

coth(kh)
(

1 + Pk
ρwg

[cos(2ψP)− cos(ψP)] coth2(kh)

+ 1
2

(
Pk
ρwg

)2

(cos(ψP)− 1)
{
3 coth2(kh) cos(3ψP)− 4 cos(2ψP)

−4 cos(ψP)− 3 − csch2(kh)
}

coth2(kh)
)

+ (a1k)2A + O(ε3). (4.9)

Note that we see a weak amplitude dependence (i.e. a1k terms) appearing in some of
these results, such as (4.7) and (4.9). This amplitude dependence is implicitly present
in figures 3–5 since they show the full, O(ε2) results (A 57) and (A 58) which encode this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CS
D

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

, o
n 

18
 M

ar
 2

02
1 

at
 1

9:
56

:2
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.628
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wind-induced wave shape changes in deep–intermediate water 903 A31-21

– π
4

– π
8

0

π
8

π
4

3π
8

10–1 100

10–1 100

Non-dimensional pressure magnitude Pk /ρwg

0

0.5

1.0

1.5(b)

(a)

Jeffreys
Generalized, ψP = 3π/4

β

a 2/
(a

12 k
)

FIGURE 4. (a) Harmonic phase β (3.54) and (b) relative harmonic amplitude a2/(a2
1k) (3.52)

versus non-dimensional pressure magnitude constant Pk/(ρwg). Results are shown for Jeffreys
and generalized Miles profiles, as indicated in the legend, with kh = ∞, ε = 0.2 and ψP = 3π/4
(for generalized Miles). All results are plotted using the full, O(ε2)-accurate expressions (A 57)
and (A 58), which include the Pk/(ρwg) � 1 limits for β (4.3) and (4.5), as well as for a2/(a2

1k)
(4.7) and (4.9). The grey lines are the results for a fourth-order unforced Stokes wave.

dependence. However, we do not show the β and a2/(a2
1k) dependence on ε as these effects

are O(ε2), or approximately 4 % of the leading-order effects in figures 3–5.
Figure 3 shows the influence of wind phase ψP on β and a2/(a2

1k) for both the
Jeffreys and generalized Miles profiles with kh = ∞ and ε = 0.2 for a range of pressure
magnitudes Pk/(ρwg) = 0.01, 0.1 and 1. For the strongest pressure forcing Pk/(ρwg) = 1,
both the Jeffreys and generalized Miles profiles induce a harmonic phase magnitude
|β| up to π/4 (figure 3a). The Jeffreys value of βJ = π/4 is placed at ψP = π/2 to
correspond with its restriction that ψP = ±π/2. The generalized Miles HP β increases
from zero at ψP = 0 (figure 3a) to roughly π/16 for the largest pressure, before decreasing
to approximately −π/4 and passing through zero near ψP = π/2. The weaker pressure
forcings show a much reduced β range, cross β = 0 at somewhat smaller values of ψP and
yield much smaller β for large wind phase angles. The angle ψP = 3π/4 is denoted by a
dashed line in figure 3, and this ψP is utilized hereafter, as suggested by Hara & Sullivan
(2015) and Husain et al. (2019).

The relative harmonic amplitude shows opposing behaviour for the two forcing types in
figure 3(b). The Jeffreys a2/(a2

1k)J = 0.7 for the strongest wind is enhanced relative to the
deep-water Stokes value a2/(a2

1k) = 1/2, while the generalized Miles value is suppressed
a2(a2

1k)G ≤ 1/2 for most values of ψP. As in figure 3(a), the weaker pressure magnitudes
give correspondingly smaller changes to a2/(a2

1k), although the small Pk/(ρwg) do slightly
enhance a2/(a2

1k) for large ψP. It is worth noting that the strongest pressure Pk/(ρwg) = 1
suppresses the first harmonic a2 as ψP → π, making the wave more linear. However, as
discussed in § 5.2, ψP ≈ π is usually observed for very weak winds. As the Pk/(ρwg) =
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FIGURE 5. (a) Harmonic phase β (3.54) and (b) relative harmonic amplitude a2/(a2
1k) (3.52)

versus non-dimensional depth kh. Results are shown for Jeffreys and generalized Miles profiles,
as well as unforced (i.e. no wind) Stokes waves, with ε = 0.2, pressure magnitude constant
Pk/(ρwg) = 1 and ψP = 3π/4 (for generalized Miles). All results are plotted using the full,
O(ε2)-accurate expressions (A 57) and (A 58). The grey lines are the results for a fourth-order
unforced Stokes wave with kh = ∞.

0.1 and 0.01 lines in figure 3(b) show, weaker winds show no such linearization. Note
that figure 3 only depicts ψP ≥ 0 since β (3.55) is antisymmetric and a2/(a2

1k) (3.56) is
symmetric about ψP = 0. This is seen by noticing ψP → −ψP =⇒ P̂m → P̂∗

m.
The wave-shape parameters show a particularly rich dependence on the pressure

magnitude Pk/(ρwg) (figure 4). While both Jeffreys and generalized Miles yield non-zero
harmonic phase β for small pressures (figure 4a), they have opposite responses for
large Pk/(ρwg). The Jeffreys profile increases steadily, reaching 3π/8 for Pk/(ρwg) =
3. Instead, the generalized Miles profile first decreases, reaching a minimum of
approximately −π/4 at Pk/(ρwg) = 0.6 and then increasing to small, positive values. The
relative harmonic amplitude shows (figure 4b) virtually no change from the deep-water
Stokes value of 1/2 until Pk/(ρwg) = 0.3. Then, the Jeffreys profile increases rapidly,
attaining a2/(a2

1k)J = 1.7 for Pk/(ρwg) = 3. Contrarily, the generalized Miles profile
decreases and asymptotes to a2/(a2

1k)G ≈ 0.2.
Finally, the non-dimensional depth kh also modulates the wind’s effect on wave shape.

For the chosen values of Pk/(ρwg) = 1 andψP = 3π/4, the generalized Miles βG ≈ −π/4
while Jeffreys βJ ≈ +π/4 for large kh (figure 5a). However, as kh decreases, both values
grow in magnitude with βJ increasing faster, nearly reaching βJ = π/2 at kh = 1. Thus,
the shallower depth kh strongly enhances the effect of wind on β. The wind’s influence
on a2/(a2

1k) is less pronounced. Notice that the unforced Stokes wave also has a depth
dependence for a2/(a2

1k) (dashed line in figure 5b). Although the relative harmonic
amplitude is enhanced for small kh in all three cases (Jeffreys, generalized and unforced
Stokes), both pressure profiles grow slower than the unforced Stokes wave. That is,
the pressure forcing appears to counteract shoaling-induced a2/(a2

1k) enhancement to
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FIGURE 6. Wave profile kη versus phase θ for ε = 0.2, ψP = 3π/4 and the generalized Miles
pressure profile for (a) kh = 1.0 and variable Pk/(ρwg) (see legend) and (b) Pk/(ρwg) = 0.1 and
variable kh (see legend).

some extent. Figure 5(b) also highlights the importance of restricting to kh ≥ 1. As kh
decreases, a2 becomes large compared to a1 and the perturbation expansion could become
disordered. This figure highlights a trend where Jeffreys and generalized Miles profiles
exhibit opposite responses to the wind: namely, Jeffreys yields positive β and an enhanced
a2/(a2

1k), while generalized Miles gives a negative β and a suppressed a2/(a2
1k). This

difference is also apparent in figure 4, wherein β and a2/(a2
1k) increase with increasing

pressure magnitude for Jeffreys, while they decrease (at least initially) for the generalized
Miles profile. This can be attributed to different choices of ψP (ψP = π/2 for Jeffreys,
but ψP = 3π/4 for generalized Miles), as well as different effects on higher harmonics,
including the derivative in the Jeffreys profile enhancing higher harmonics.

Both the harmonic phase and the relative harmonic amplitude determine the wave shape.
We consider their combined influence by plotting the surface profile under the action of
the generalized Miles pressure profile, with ε = 0.2 to emphasize the pressure-induced
shape changes. Figure 6(a) shows how the surface profile η versus phase θ varies with
Pk/(ρwg) = 0, 0.1 and 0.2 for wind blowing to the right. The Pk/(ρwg) = 0 profile
has skewness (3.59) S = 0.6 and asymmetry (3.60) A = 0, as expected for a kh = 1
Stokes wave. The Pk/(ρwg) = 0.1 profile deviates only slightly from the unforced profile.
However, the Pk/(ρwg) = 0.2 profile shows a noticeable horizontal asymmetry, with both
skewness S = 0.4 and asymmetry A = 0.3 that are fundamentally different from a Stokes
wave. This follows from figure 4(a) with kh = ∞ since Pk/(ρwg) = 0.1 generates a
somewhat small βG ≈ −12◦, while βG ≈ −27◦ is significantly larger for Pk/(ρwg) = 0.2.
Instead, (4.5) can be used when kh = 1 to calculate βG ≈ −19◦ for Pk/(ρwg) = 0.1 and
βG ≈ −45◦ for Pk/(ρwg) = 0.2. Note that the larger pressure magnitudes cause the crest to
shrink. This is to be expected, since the magnitude of the first harmonic a2/a2

1k decreases
as Pk/(ρwg) increases for the generalized Miles profile (figure 3b). We can also see
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903 A31-24 T. Zdyrski and F. Feddersen

that increasing the depth kh decreases the influence of wind on asymmetry (figure 6b).
The kh = ∞ profile (S = 0.2, A = 0.04) is less asymmetric than the kh = 1 profile, in
agreement with figure 5.

4.2. Phase speed and growth rate
In addition to influencing wave shape, the pressure-forcing terms also affect the phase
speed, as predicted by Jeffreys (1925) and Miles (1957). We normalize the phase speed c =
Re{ω}/k by the unforced, linear phase speed c0 = √

g tanh(kh)/k. The complete fractional
phase speed change �c/c0 is given in (A 65). If we consider very small waves ε ≪ 1,
then (A 65) simplifies considerably

�c
c0

= |c| − |c|∣∣P=0

c0

= 1√
2

√√√√1 + Pk
ρwg

cos(ψP)+
√

1 +
(

Pk
ρwg

)2

+ 2
Pk
ρwg

cos(ψP)− 1 + O(ε2), (4.10)

with ψP = ±π/2 for the Jeffreys profile. If, instead of very small waves, we assume the
forcing is weak, Pk/(ρwg) � 1, we find

�c
c0

= 1
2

Pk
ρwg

cos(ψP)− 1
8

(
Pk
ρwg

)2

cos(2ψP)

+ 8 cosh4(kh)− 8 cosh2(kh)+ 9
16 sinh4(kh)

(
(a1k)2 − (a1k)2

∣∣∣∣
P=0

)
+ O(ε3). (4.11)

For these limiting cases, we find that both surface pressure profiles generate the same
change to the phase speed. This is unsurprising since, at leading order, both pressure
profiles are equivalent (if ψP = ±π/2). The a2

1 term is the amplitude dispersion due to
nonlinearity described by Stokes (1880).

As shown in § 3, the different harmonics grow at different rates. Here, we will discuss
the growth rate of the primary wave. It is conventional to describe the energy growth
rate, γ := ∂tE/E, rather than the amplitude growth rate, ∂tη/η = Im{ω}. However, since
E ∝ η2, they are related as γ = 2 Im{ω}. The complete non-dimensional growth rate γ /f0
is given in (A 66). For very small waves, ε ≪ 1, (A 66) simplifies to

γ

f0
= 4π Im{ω}

c0k
= 2

√
2π sgn

(
Pk
ρwg

sin(ψP)

)

×
√

−1 − P cos(ψP)k/(ρwg)+
√

1 + P2k2/(ρ2
wg2)+ 2P cos(ψP)k/(ρwg)+ O(ε2),

(4.12)

with f0 = Re{ω0}/(2π) = c0k/(2π) the unforced, linear wave frequency. Instead of
assuming very small waves, if we consider weak wind forcing Pk/(ρwg) � 1, we find

γ

f0
= 2π

Pk
ρwg

sin(ψP)− π

2

(
Pk
ρwg

)2

sin(2ψP)+ O(ε3). (4.13)
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Wind-induced wave shape changes in deep–intermediate water 903 A31-25

Both Jeffreys (1925) – with ψP = π/2 – and Miles (1957) calculated the growth rate to
leading order for weak pressure forcing Pk/(ρwg) = O(ε); (4.13) matches their results.
Naturally, if P → 0, we find γ → 0, as there is no growth.

Notice that, for both the Jeffreys and generalized Miles profiles, the HP β and growth
rate are related for very small waves (ε ≪ 1) with weak wind (Pk/(ρwg) � 1) as(

β0,J

β0,G

)
= Pk
ρwg

( ±1

sin(2ψP)− sin(ψP)

)
coth2(kh)+ O

(
ε

Pk
ρwg

)

= 1
2π

γ

f0

(
1

(2 cos(ψP)− 1)

)
coth2(kh)+ O

(
ε

Pk
ρwg

)
. (4.14)

The connection with wave asymmetry (related to β) suggests a deeper link between wave
growth and wave shape. This is potentially analogous to shoaling, weakly nonlinear waves
that both grow and becomes asymmetric.

5. Discussion

5.1. Time scale validity
Here, we discuss the time scale validity of our results. As asymptotic expansions must stay
ordered to remain consistent, the solution’s O(ε) term must be larger than the O(ε2) term
as ε → 0. However, as shown in (3.50) and (3.51), the O(ε2) first harmonic grows faster
than the O(ε) primary wave, resulting in a disordered expansion in finite time. As the first
harmonic grows faster than the primary wave by a factor of exp(Im{ω0}t), consistency
requires that this exponent remain O(1) as ε → 0, i.e.

t Im{ω0} = O(1). (5.1)

Since O(Im{ω0}) = O(Pk/(ρwg)), redimensionalizing shows our results are restricted to

t
T∞

0
≤ O

(
Pk
ρwg

)−1

, (5.2)

with the characteristic, unforced, linear, deep-water wave period T∞
0 = 2π/

√
gk. For the

case considered here with Pk/(ρwg) = O(1), this implies the solution may only be valid
for a few characteristic wave periods T∞

0 . However, for weaker winds, the temporal range of
validity is extended. For Pk/(ρwg) = O(ε2), the solution is well ordered for time intervals
O(T∞

0 /ε
2), assuming the solution is calculated to O(ε3) accuracy with a frequency ω

accurate to order ε2.
The shape parameters β and a2/(a2

1k) change very little over time. To leading order,
the primary wave (3.50) grows like η̂m=1 ∝ exp(Im{ω0}t0) while the first harmonic (3.51)
goes as η̂m=2 ∝ exp(2 Im{ω0}t0). By dividing η̂m=2/(η̂

2
1k) in (3.52) and (3.54), our shape

parameters β (3.55) and a2/(a2
1k) (3.56) are constant for time intervals of the length

O(T∞
0 ). Even the higher-order corrections (appendix A) for a2/(a2

1k) (A 57) and β (A 58)
show very little temporal variation during the valid time scales where t Im{ω0} = O(1).
In contrast, the skewness (3.59) and asymmetry (3.60) show a stronger time scale
dependence, with exp(t Im{ω0}) appearing at leading order. Nevertheless, our restriction
that t Im{ω0} = O(1) ensures that, over the solution’s range of temporal validity, the
skewness and asymmetry do not vary substantially.
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3π/4
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Pressure p′
H

FIGURE 7. LES modelled non-dimensional, perturbation air pressure over a right-propagating
linear surface gravity wave as a function of non-dimensional phase kx and height kz. This
simulation has non-dimensional surface roughness kz0 = 1.35 × 10−3, wave steepness ε = 0.2
and inverse wave age u∗/c∞

0 = 0.71. The red line denotes the wind phase ψP, as measured from
the wave crest to the high pressure location. Reproduced from figure 2b of Husain et al. (2019).

5.2. Using LES to constrain the surface pressure
LES simulations of the airflow over a single, static, sinusoidal (i.e. no harmonics),
deep-water wave by Husain et al. (2019) (see also Hara & Sullivan 2015) allow estimation
of the two unknown parameters: pressure magnitude Pk/(ρwg) and wind phase ψP. The
Husain et al. (2019) simulations were based on the laboratory experiments of Buckley &
Veron (2016) and explored a variety of surface roughnesses kz0, wave steepnesses ε and
wind speeds u∗/c∞

0 . We consider the simulation (Husain et al. 2019) with intermediate
surface roughness kz0 = 1.35 × 10−3, appreciable wave slope ε = 0.2 and young waves
u∗/c∞

0 = 0.71 (figure 7). The non-dimensional surface perturbation pressure p′
H varies

over a range of ±20 with the maximum shifted ≈ 3π/4 windward of the crest (red bar in
figure 7), yielding our choice of ψP ≈ 3π/4. The Husain et al. (2019) value of ψP ≈ 3π/4
is also qualitatively consistent with the surface pressure and wind phase reported by
Donelan et al. (2006).

Note that ψP appears to be a function of wind speed (or pressure magnitude). Donelan
et al. (2006), Hara & Sullivan (2015) and Husain et al. (2019) suggest ψP ≈ 3π/4 for
inverse wave ages uc/c0 ≈ 0.19 to 0.71. In contrast, numerical simulations find ψP ≈ π
for very small inverse wave ages u∗/c0 ≤ 0.09 (e.g. Sullivan, McWilliams & Moeng 2000;
Yang & Shen 2010). According to figure 2, this corresponds to a growth rate γ /f ∞

0 ≤
10−3 � ε4 for ε = 0.2. Given that our analysis is limited to Pk/(ρwg) = O(ε2) or stronger
(cf. appendix A.6), these weak winds are outside the scope of our analysis.

In regards to the pressure magnitude, Husain et al. (2019) non-dimensionalized pressure
with the air density and friction velocity,

p′
H = p

ρau2∗
, (5.3)

whereas we non-dimensionalized p′ by ρw, g and k. Thus, converting p′
H to p′ we find

p′ = pk
ρwg

= p
ρau2∗

u2
∗

(c∞
0 )

2

ρa

ρw
= u2

∗
(c∞

0 )
2

ρa

ρw
p′

H ≈ 5.0 × 10−4p′
H. (5.4)

With u∗/c∞
0 = 0.71 (Husain et al. 2019) and ρa/ρw ≈ 10−3, p′ ≈ 10−2 and |p′| ≈ 7 × 10−3.

Using their value of ε = 0.2 then gives |p|k/(ρwg) ≈ ε3, or Pk/(ρwg) ≈ ε2. Interestingly,
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FIGURE 8. Harmonic phase β versus inverse wave age u∗/c0 (symbols) for the Leykin et al.
(1995) laboratory experiments. The black, dashed line is the Leykin et al. (1995) linear fit.
Theoretical HP β (solid red) are given for the generalized Miles pressure profile with ψP =
3π/4, kh = 2.5 and ε = 0.15, and conversion of u∗/c0 to Pk/(ρwg) is given by (5.6) (cf. § 5.3).

the non-dimensional pressure magnitude for this simulation is consistent with that
inferred from the u∗/c∞

0 versus γ /f0 relationship (figure 2), where we see that u∗/c∞
0 =

0.7 =⇒ γ /f0 = 0.1. Using (2.19) andψP = 3π/4 gives Pk/(ρwg) = γ /[2πf0 sin(ψP)] =
2 × 10−2. That is, Pk/(ρwg) ≈ ε2. This can be compared to our results for weak wind
Pk/(ρwg) � 1, such as (4.5) and (4.9) truncated to εO(Pk/(ρwg)) = O(ε3). Thus, the
results of Husain et al. (2019) provide an estimate for ψP and a Pk/(ρwg) consistent with
our theoretical development. However, the appropriate, specific pressure profile (Jeffreys
or generalized Miles) remains to be determined; cf. § 5.4.

5.3. Comparison of theory to laboratory wave-shape observations
Here, we compare our predicted harmonic phase to the laboratory experiments in Leykin
et al. (1995). We cannot compare to Feddersen & Veron (2005) as their kh ≤ 1.2, and the
u∗/c0 to γ /f0 relationship (figure 2) needed for determining Pk/(ρwg) is for deep water. In
Leykin et al. (1995), laboratory wind-generated surface gravity waves with ε ≈ 0.15 and
kh = 2.5 had a quasi-linear relationship between the biphase β at the peak frequency (the
statistical analogue of our harmonic phase β) and the inverse wave age u∗/c0 (figure 8). For
comparison, our pressure magnitude Pk/(ρwg) must be converted to an inverse wave age
u∗/c0 (§ 2.4). We assume the deep-water relationship between u∗/c0 and γ /f0 (figure 2)
holds for kh = 2.5, which is parameterized (Banner & Song 2002) as (figure 2, solid line)

γ

f0
= 32.5(2π)

ρa

ρw

(
u∗
c0

)2

. (5.5)

Using (2.19), we can relate γ /f0 to Pk/(ρwg) for deep water to give

Pk
ρwg

= 32.5
sin(ψP)

ρa

ρw

(
u∗
c0

)2

, (5.6)

allowing comparison between theory and laboratory observations.
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Using (5.6), the measured inverse wave ages u∗/c0 = 0.5 to 1.5 correspond to pressure
magnitudes Pk/(ρwg) = 0.01 to 0.1, or Pk/(ρwg) = O(ε2) to O(ε). Therefore, our results
for weak forcing Pk/(ρwg) � 1 are applicable here (cf. appendix A.6). Assuming a
generalized Miles pressure profile with ψP = 3π/4, the predicted and measured β are in
qualitative agreement (compare red curve to symbols in figure 8). We emphasize that (5.6),
relying on the conversion between u∗/c0 and γ /f0 from figure 2, is only approximate and is
of questionable applicability for water depth kh = 2.5. If the conversion coefficient were a
factor of 3 larger, the results would match reasonably well. We also note that the relatively
high wind speeds (u∗ up to 1.7 m s−1) likely caused additional physical processes, such as
whitecapping or microbreaking, to occur. Such dissipative processes are not considered in
our theoretical treatment.

5.4. The surface pressure profile
Most theoretical treatments of wind-induced wave growth utilize a linear theory with
monochromatic waves (e.g. Miles 1957; Belcher & Hunt 1993; Young & Wolfe 2014).
In this scenario, for the same ψP, the pressure profiles considered are identical at
leading order and one need not distinguish between, for instance, the Jeffreys or
generalized Miles profiles. However, when considering higher-order corrections to the
higher harmonics, differences arise and care must be taken when choosing the pressure
profile.

Direct measurements of the surface pressure profile are challenging and rare (Donelan
et al. 2006). However, our theory can offer insight by comparing the profiles’ differing
effects on wave-shape parameters to simulations and measurements of wind-forced waves,
which have found a non-zero β (Leykin et al. 1995; Feddersen & Veron 2005). Both
Feddersen & Veron (2005) and Leykin et al. (1995) measure a harmonic phase β < 0
for co-aligned wind and waves. However, the Jeffreys profile gives a positive β while
the generalized Miles profile with ψP ≈ 3π/4 gives a negative β (figures 3a and 4a).
Additionally, the Jeffreys requirement of ψP = ±π/2 appears inconsistent with numerical
simulations showing ψP ≈ 3π/4 (Hara & Sullivan 2015; Husain et al. 2019). Among
the profiles considered here, the generalized Miles case best reproduces the results of
wave-shape experiments.

Throughout the derivation, we have maintained a rather general surface pressure profile
p(x, t), namely any time-independent convolution with η (i.e. p̂m ∝ η̂m, cf. § 2.3). Coupled
air–water simulations (e.g. Liu et al. 2010; Hao & Shen 2019) offer the possibility of
extracting realistic wave shapes and surface pressures, which could then be compared to
our theory. However, LES atmospheric simulations over purely sinusoidal waves yield
surface pressure profiles that are not purely sinusoidal (e.g. Hara & Sullivan 2015, figure
7 or Husain et al. 2019, figure 6). Although this is counter to our assumption that
p̂m ∝ η̂m, it could be remedied by extending our small ε theory to allow pressures with
Fourier representations p̂m = kP̂mη̂m + k2∑

n P̂m,nη̂nη̂m + . . .. Additional surface pressure
complexity is likely generated if LES atmospheric simulations used a Stokes wave
profile instead of a single sinusoid. Finally, allowing the wind, via surface pressure
profiles, to affect wave shape, as we have done, likely induces further changes back to
the airflow and surface pressure profile. That is, the air and water phases are coupled.
Although this study relied on prescribed surface pressures, it lays the groundwork for a
weakly nonlinear coupled theory. Future work will attempt to couple the wind and waves
directly, providing insight into the surface pressure profile and the related wave shape and
growth.
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6. Summary

Here, we derive a theory for the wind’s effect on the shape of surface gravity waves.
The influence of the wind on ocean waves has been studied in great detail theoretically,
numerically and observationally in the context of wave growth. A few laboratory and
numerical experiments have shown that wind can also influence wave shape, although
no theory for this effect exists. Two key, weakly nonlinear wave-shape parameters are
the harmonic phase β, encoding the relative phase between the primary wave and first
harmonic (zero for unforced Stokes waves), and the relative harmonic amplitude a2/(a2

1k).
These two parameters can also be converted to the more conventional skewness and
asymmetry. Motivated by prior wind–wave generation theories, two surface pressure
profiles (Jeffreys and generalized Miles) based on convolutions with the wave profile η
are prescribed. A multiple-scale perturbation analysis is performed for the small wave
steepness ε := a1k. The deep- to intermediate-water theoretical solutions are derived for
quasi-periodic progressive waves yielding the wind-induced changes to β and a2/(a2

1k)
as well as higher-order corrections to the previously known growth and phase speed
changes. These parameters are functions of the four non-dimensional parameters: the wave
steepness a1k, depth kh, pressure magnitude Pk/(ρwg) and wind phase ψP. By substituting
the pressure magnitude P with P → εP or P → ε2P, our derivation permits a variety of
pressure magnitudes (i.e. wind speeds).

The relative harmonic ratio a2/(a2
1k) displays a strong dependence on the forcing type,

enhanced for Jeffreys but suppressed for generalized Miles. The harmonic phase β has
more complicated behaviour, including a local minimum for the generalized Miles case as
a function of the pressure magnitude. Despite restricting our analysis to intermediate and
deep water, we find decreasing kh enhances the wind’s effect on wave shape. This suggests
pressure forcing could play a larger role in wave shape for shallow-water waves. We also
find direct relationships between growth rates and β for the pressure profiles considered.
Atmospheric large eddy simulations constrain both the pressure magnitude P and wind
phase ψP. Using the constrained ψP, our HP predictions are qualitatively consistent with
laboratory observations. Only the generalized Miles profile could reproduce the observed
sign for β, suggesting that generalized Miles surface pressure profiles best represent the
actual wave surface pressure profile. Future studies will investigate the shallow-water limit.
Other avenues for future work include dynamically coupling the air and wave field. Such
an approach would obviate the need to impose a specified pressure profile, increasing the
applicability of the theory.
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Appendix A. Strong forcing: Pk/(ρwg) = O(1) continued

A.1. The O(ε3) equations
In § 3, we derived the leading-order contributions to the HP β and relative amplitude
a2/(a2

1k). Now, we will extend this derivation to the next non-zero correction. This will
reveal a weak amplitude and time dependence to these shape parameters. Furthermore, by
finding β and a2/(a2

1k) accurate to O(ε2), we can substitute P → εP yielding solutions
with Pk/(ρwg) = O(ε), or P → ε2 generating Pk/(ρwg) = O(ε2) results (appendix A.6).
However, the expressions begin to become unwieldy. Therefore, we will only sketch the
derivation. The third-order equations give

∂φ3

∂z
− ∂η3

∂t0
= ∂A1

∂t2
exp(i(x − ω0t0))

+ A1|A1|2 KIN3,1 exp(i(x − ω0t0))|exp(−iω0t0)|2 + A3
1 KIN3,3 exp(3i(x − ω0t0)),

(A 1)

∂φ3

∂t0
+ η3 + p3 = iω0

∂A1

∂t2
exp(i(x − ω0t0)) coth(h)

+ A1|A1|2 DYN3,1 exp(i(x − ω0t0))|exp(−iω0t0)|2 + A3
1 DYN3,3 exp(3i(x − ω0t0)),

(A 2)

with the real part implied. Here, KIN3,1,KIN3,3,DYN3,1,DYN3,3 ∈ C are constants that
do not depend on A1, x , tn or z (these dependencies have been explicitly factored out) and
are composed entirely of known quantities from previous orders. In general, KINn,m and
DYNn,m are the constants (depending on h, ψP and P̂m only) for the nth order, mth Fourier
component (i.e. exp(imkx)) term from the kinematic or dynamic boundary condition,
respectively. See the other supplementary material available at https://doi.org/10.1017/jfm.
2020.628 for their expressions.

Once again, inserting our Fourier transforms (3.6)–(3.8), we find

m = 1 Fourier component:

φ̂3,1 − ∂η̂3,1

∂t0
= ∂A1

∂t2
exp(−iω0t0)+ A1|A1|2 KIN3,1 exp(−iω0t0)|exp(−iω0t0)|2, (A 3)

coth(h)
∂φ̂3,1

∂t0
+ (1 + P̂1)η̂3,1 = iω0

∂A1

∂t2
exp(−iω0t0) coth(h)

+ A1|A1|2 DYN3,1 exp(−iω0t0)|exp(−iω0t0)|2, (A 4)

m = 3 Fourier component:

3φ̂3,3 − ∂η̂3,3

∂t0
= A3

1 KIN3,3 exp(−3iω0t0), (A 5)

coth(3h)
∂φ̂3,3

∂t0
+ (1 + P̂3)η̂3,3 = A3

1 DYN3,3 exp(−3iω0t0). (A 6)
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Eliminating φ̂3,m gives

m = 1 Fourier component:

coth(h)
∂2η̂3,1

∂t2
0

+ (1 + P̂1)η̂3,1 = −
(

−iω0 + ∂

∂t0

)
∂A1

∂t2
exp(−iω0t0) coth(h)

+ A1|A1|2
[
(iω0 − 2 Im{ω0}) coth(h)KIN3,1 + DYN3,1

]
exp(−iω0t0)|exp(−iω0t0)|2,

(A 7)

m = 3 Fourier component:

coth(3h)
∂2η̂3,3

∂t2
0

+ 3(1 + P̂3)η̂3,3 = 3A3
1

[
iω0 coth(3h)KIN3,3 + DYN3,3

]
exp(−3iω0t0).

(A 8)

Notice that we did not evaluate the ∂/∂t0 derivative in the (∂/∂t0 − iω0) of (A 7). We will
discuss this momentarily.

Preventing secular terms requires that coefficients of exp(−iω0t0) for m = 1 vanish.
Thus, we require

coth(h)
(

−iω0 + ∂

∂t0

)
∂A1

∂t2
exp(−iω0t0)

= A1|A1|2 exp(−iω0t0) exp(2 Im{ω0}t0)
[
(iω0 − 2 Im{ω0}) coth(h)KIN3,1 + DYN3,1

]
.

(A 9)

Here, we encounter an issue: given that A1(t2, t3, . . .) is explicitly not a function of t0, there
is no (non-trivial) way to satisfy the t0 dependence of this compatibility condition.

We encounter this issue because the growth on the fast time scale affects the period of
the slower time scales. This could be dealt with formally if we had allowed the fast time
scale t0 to modulate the slower time scales by defining our multiple-scale expansion with
additional, fast time scale dependencies

dt′0
dt

= 1,
dt′1
dt

= εμ1(t′0),
dt′2
dt

= ε2μ2(t′0), . . . ,
dt′n
dt

= εnμn(t′0), (A 10)

with the primes to make our new time scales distinct from the originally defined ones.
Then, we can choose the form of μn to remove secular terms. This modified multiple-scale
approach is similar to the one specified in Pedersen (2006).

Using this freedom to remove these problematic secularities, we would find that

μn(t′0) = exp(n Im{ω0}t′0). (A 11)

This method would eliminate the need to be careful about the (∂/∂t′0 − iω0)∂A1/∂t′2 term
previously mentioned, and would eliminate the exp(2 Im{ω0}t′0) term we are attempting
to deal with currently. Later, to re-express the solution in terms of t, a simple integration
yields

t′n = εn

n Im{ω0}(exp(n Im{ω0}t)− 1), (A 12)

where we required that t′n = 0 at t = 0. Note that t′0 is not a special case; treating n as a
continuous variable and taking the limit n → 0 recovers t′0 = t.
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903 A31-32 T. Zdyrski and F. Feddersen

Note that, since our previous solutions had no t1 dependence, making this change to t2
does not alter any of our previous conclusions. Furthermore, we will see that only the even
time scales (t2, t4, etc) need this treatment. Since we are only considering time scales up
to t3, we will only make this replacement for t2.

Making this redefinition, our compatibility conditions becomes

coth(h)
(

−iω0 + ∂

∂t0

)
∂A1

∂t′2
exp(−iω0t0) exp(2 Im{ω0}t0)

= A1|A1|2 exp(−iω0t0) exp(2 Im{ω0}t0)
[
(iω0 − 2 Im{ω0}) coth(h)KIN3,1 + DYN3,1

]
,

(A 13)

which simplifies to

∂A1

∂t′2
= A1|A1|2 (iω0 − 2 Im{ω0})KIN3,1 + tanh(h)DYN3,1

−2iω0 + 2 Im{ω0}
:= −iA1|A1|2 COMB3,1, (A 14)

where we defined

COMB3,1 := i
(iω0 − 2 Im{ω0})KIN3,1 + tanh(h)DYN3,1

−2iω0 + 2 Im{ω0} . (A 15)

Now, if we assume a solution of the form

A1(t′2) = ρ(t′2) exp(iψ(t′2)), (A 16)

with ρ(t′2), ψ(t
′
2) ∈ R, (A 15) yields

∂ρ

∂t′2
+ iρ

∂ψ

∂t′2
= −iρ3 COMB3,1 . (A 17)

Collecting real and imaginary parts and solving yields

A1(t′2) = A′
1 exp

[
i
1
2

ln
(

1 − 2
∣∣A′

1

∣∣2t′2 Im
{
COMB3,1

})Re
{
COMB3,1

}
Im
{
COMB3,1

}
]

÷
√

1 − 2
∣∣A′

1

∣∣2t′2 Im
{
COMB3,1

}
, (A 18)

with A′
1(t3) ∈ C. Later, converting back to t will give

A1(t) = A′
1 exp

{
i
2

ln

[
1 − ε2

∣∣A′
1

∣∣2(exp(2 Im{ω0}t)− 1)
Im
{
COMB3,1

}
Im{ω0}

]
Re
{
COMB3,1

}
Im
{
COMB3,1

}
}

÷
√

1 − ε2
∣∣A′

1

∣∣2 (exp(2 Im{ω0}t)− 1)
Im
{
COMB3,1

}
Im{ω0} . (A 19)

Note that if p → 0, then COMB3,1 reduces to the real quantity

COMB3,1

∣∣∣∣
p=0

= ω0
8 cosh4(h)− 8 cosh2(8)+ 9

16 sinh4(h)
. (A 20)

With the compatibility condition solved, the m = 1 equation reduces to the homogeneous
equation. For simplicity, we will choose η̂3,1 = 0.
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Wind-induced wave shape changes in deep–intermediate water 903 A31-33

Substituting (A 14) and our solution for η̂3,1 into the surface boundary conditions allows
us to solve for φ̂3,1. Assuming a solution of the form

φ̂3,1 = C3,1A1|A1|2 exp(−iω0t0) exp(2 Im{ω0}t0), (A 21)

yields

C3,1 = −iω0 KIN3,1 + tanh(h)DYN3,1

−2iω0 + 2 Im{ω0} . (A 22)

The second harmonic (m = 3) equation is solved for η̂3,3 as usual. Then, substituting
this solution into the surface boundary conditions permits solving for φ̂3,3.

Thus, we have the solutions

φ3 = C3,1A1|A1|2 exp(2 Im{ω0}t0) exp(i(x − ω0t0))
cosh(z + h)

sinh(h)

+ C′
3,3A3

1 exp(3i(x − ω0t0))
cosh[3(z + h)]

sinh(3h)
, (A 23)

η3 = C3,3A3
1 exp(3i(x − ω0t0)), (A 24)

with

C3,1 = −iω0 KIN3,1 + tanh(h)DYN3,1

−2iω0 + 2 Im{ω0} , (A 25)

C′
3,3 =

(
1 + P̂3

)
KIN3,3 −3iω0 DYN3,3

−9ω2
0 coth(3h)+ 3

(
1 + P̂3

) , (A 26)

C3,3 = 3
iω0 coth(3h)KIN3,3 + DYN3,3

−9ω2
0 coth(3h)+ 3

(
1 + P̂3

) . (A 27)

With no correction to the first harmonic η̂m=2, we continue to the next order.

A.2. The O(ε4) equations
Finally, going to fourth order, we have

∂φ4

∂z
− ∂η4

∂t0
= ∂A1

∂t3
exp(i(x − ω0t0))

+ KIN4,0 |A1 exp(−iω0t0)|4 + KIN4,2 A2
1 exp(2i(x − ω0t0))|A1 exp(−iω0t0)|2

+ KIN4,4 A4
1 exp(4i(x − ω0t0)), (A 28)

∂φ4

∂t0
+ η4 + p4 = iω0

∂A1

∂t3
exp(i(x − ω0t0)) coth(h)

+ DYN4,0 |A1 exp(−iω0t0)|4 + DYN4,2 A2
1 exp(2i(x − ω0t0))|A1 exp(−iω0t0)|2

+ DYN4,4 A4
1 exp(4i(x − ω0t0)). (A 29)

Here, KIN4,0,KIN4,2,KIN4,4,DYN4,0,DYN4,2,DYN4,4 ∈ C are constants that do not
depend on A1, x , tn or z (these dependencies have been explicitly factored out) and are
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903 A31-34 T. Zdyrski and F. Feddersen

composed entirely of known quantities from previous orders. See the other supplementary
material for their expressions.

Inserting the Fourier transforms (3.6)–(3.8) gives

m = 2 Fourier component:

2φ̂4,2 − ∂η̂4,2

∂t0
= A2

1|A1|2 KIN4,2 exp(2i(x − ω0t0))|exp(−iω0t0)|2, (A 30)

∂φ̂4,2

∂t0
coth(2h)+ (1 + P̂2)η̂4,2 = A2

1|A1|2 DYN4,2 exp(2i(x − ω0t0))|exp(−iω0t0)|2,
(A 31)

m = 4 Fourier component:

4φ̂4,4 − ∂η̂4,4

∂t0
= A4

1 KIN4,4 exp(4i(x − ω0t0)), (A 32)

∂φ̂4,4

∂t0
coth(4h)+ (1 + P̂4)η̂4,4 = A4

1 DYN4,4 exp(4i(x − ω0t0)), (A 33)

m = 0 Fourier component:

−∂η̂4,0

∂t0
= |A1|4 KIN4,0 |exp(−iω0t0)|4, (A 34)

∂φ̂4,0

∂t0
+ η̂4,0 = |A1|4 DYN4,0 |exp(−iω0t0)|4, (A 35)

m = 1 Fourier component:

φ̂4,1 − ∂η̂4,1

∂t0
= ∂A1

∂t3
exp(−iω0t0), (A 36)

∂φ̂4,1

∂t0
coth(h)+ (1 + P̂1)η̂4,1 = iω0

∂A1

∂t3
exp(−iω0t0) coth(h). (A 37)

Again, eliminating η̂4 gives

m = 2 Fourier component:

∂2φ̂4,2

∂t2
0

coth(2h)+ 2(1 + P̂2)φ̂4,2 = A2
1|A1|2 exp(−2iω0t0) exp(2 Im{ω0}t0)

×
[
(1 + P̂2)KIN4,2 +2(−iω0 + Im{ω0})DYN4,2

]
. (A 38)

m = 4 Fourier component:

∂2φ̂4,4

∂t2
0

coth(4h)+ 4(1 + P̂4)φ̂4,4 = A4
1 exp(−4iω0t0)

[
(1 + P̂4)KIN4,4 −4iω0 DYN4,4

]
.

(A 39)
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Wind-induced wave shape changes in deep–intermediate water 903 A31-35

m = 0 Fourier component:

∂2φ̂4,0

∂t2
0

= |A1|4 exp(4 Im{ω0}t0)
[
KIN4,0 +4 Im{ω0} DYN4,0

]
. (A 40)

m = 1 Fourier component:

∂2φ̂4,1

∂t2
0

coth(h)+ (1 + P̂1)φ̂4,1 = 2
(

1 + P̂1

)∂A1

∂t3
exp(−iω0t0). (A 41)

Preventing secular terms requires that ∂t3 A1 = 0. These can be solved as usual for φ̂4,m.
Using the surface boundary conditions, the solutions for η̂4,m can then be determined as
well.

The only terms worth discussing are the zero modes, φ̂4,0 and η̂4,0. While η̂4,0 has
physical meaning (this is a component of the setup or setdown), φ̂4,0 has a gauge freedom.
We may add a constant term (in x, z and t0), as well as a term proportional to t0, without
affecting any observables. Using this freedom, we will choose these two free constants
such that the η̂4,0 → 0 and φ̂4,0 → 0 as P → 0.

The solutions at this order are

φ4 = C′
4,2A2

1|A1|2 exp(2i(x − ω0t0)) exp(2 Im{ω0}t0)
cosh[2(z + h)]

sinh(2h)

+ C′
4,4A4

1 exp(4i(x − ω0t0))
cosh[4(z + h)]

sinh(4h)

+ C′
4,0

(
|A1|4 exp(4 Im{ω0}t0)−

∣∣∣Ã1

∣∣∣4)+ t0C4,0

∣∣∣Ã1

∣∣∣4, (A 42)

η4 = C4,2A2
1|A1|2 exp(2i(x − ω0t0)) exp(2 Im{ω0}t0)+ C4,4A4

1 exp(4i(x − ω0t0))

+ C4,0

(
|A1|4 exp(4 Im{ω0}t0)−

∣∣∣Ã1

∣∣∣4), (A 43)

with

C4,0 = − KIN4,0

4 Im{ω0} = 0, (A 44)

C4,2 = (iω0 − Im{ω0}) coth(2h)KIN4,2 + DYN4,2

2(−iω0 + Im{ω0})2 coth(2h)+
(

1 + P̂2

) , (A 45)

C4,4 = iω0 coth(4h)KIN4,4 + DYN4,4

−4ω2
0 coth(4h)+

(
1 + P̂4

) , (A 46)

C′
4,0 = KIN4,0 +4 Im{ω0} DYN4,0

16 Im{ω0}2 , (A 47)

C′
4,2 =

(
1 + P̂2

)
KIN4,2 +2(−iω0 + Im{ω0})DYN4,2

4(−iω0 + Im{ω0})2 coth(2h)+ 2
(

1 + P̂2

) , (A 48)
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903 A31-36 T. Zdyrski and F. Feddersen

C′
4,4 =

(
1 + P̂4

)
KIN4,4 −4iω0 DYN4,4

−16ω2
0 coth(4h)+ 4

(
1 + P̂4

) . (A 49)

Here, Ã1 := A1

∣∣
P=0 is the additive ‘constant’ we were permitted from the m = 0 equation;

note that Ã1 could still be a function of slower time scales t1, t′2, etc. As mentioned
previously, a term, linear in t0, was included in φ̂4,0. This was necessary in order to include
the Ã1 term in η̂4,0, ensuring that the C4,0 setdown term vanishes as t → 0, as required by
our choice of z = 0 datum at the initial mean water level. In addition, note that KIN4,0 = 0
(cf. the supplementary material) implies the setdown term C4,0 is identically zero for all
times. For reference, the full solution for η is

η = Re
{
εA1 exp(i(x − ω0t0))+ ε2A2

1C2,2 exp(2i(x − ω0t0))+ ε3A3
1C3,3 exp(3i(x − ω0t0))

+ε4(A4
1C4,4 exp(4i(x − ω0t0))+ A2

1|A1|2 exp(2 Im{ω0}t0) exp(2i(x − ω0t0))
)}

+ O(ε5), (A 50)

with A1(t2) given by (A 18). At this order, we have a correction to the first harmonic η̂m=2,
which will modify our shape parameters.

A.3. Shape parameters
Now, we can calculate the shape parameters when pressure enters at leading order. Recall
that we are seeking two parameters – the HP β, and the relative harmonic amplitude,
a2/(a2

1k) (with a2 the amplitude of the complete first harmonic, and a1 the amplitude of
the complete primary wave).

The primary wave is simply

ηm=1 = εA1 exp(i(x − ω0t0))+ O(ε5), (A 51)

with A1(t′2) given by (A 18).
The first harmonic has two components. We calculated the O(ε2) contribution in (3.47),

and the O(ε4) contribution in (A 43). Combining these, we have the first harmonic

ηm=2 = ε2A2
1 exp(2i(x − ω0t0))C2,2 + ε4A2

1|A1|2 exp(2i(x − ω0t0)) exp(2 Im{ω0}t0)C4,2

+ O(ε5), (A 52)

with C2,2 defined in (3.49) as

C2,2 := 1
4

(
2 + 3 csch2(h)

)
coth(h)

1 + P̂1

1 + P̂1 − coth2(h)
[
P̂2 − P̂1

] , (A 53)

and C4,2 defined in (A 45) as

C4,2 = (iω0 − Im{ω0}) coth(2h)KIN4,2 + DYN4,2

2(−iω0 + Im{ω0})2 coth(2h)+
(

1 + P̂2

) . (A 54)
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Wind-induced wave shape changes in deep–intermediate water 903 A31-37

See the other supplementary material for the full expression. Note that if p → 0, then C4,2
reduces to the real quantity

C4,2

∣∣∣∣
p=0

:= A = tanh(h)
384

(
272 + 856 csch2(h)+ 512 csch4(h)

−558 csch6(h)− 567 csch8(h)− 81 csch10(h)
)
. (A 55)

To find the relative harmonic amplitude and HP, we will need to calculate the ratio of
the first harmonic, η̂m=2, to the primary wave, η̂m=1, squared (cf. (3.52) and (3.54)):

η̂m=2

η̂2
m=1

= C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2 + O(ε3). (A 56)

Now, the relative harmonic amplitude (3.52), a2/(a2
1k), is the magnitude of this quantity,

a2

a2
1k

= ∣∣C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2

∣∣+ O(ε3)

= ∣∣C2,2

∣∣(1 + ε2|A1|2 exp(2 Im{ω0}t0)
Re
{
C4,2C∗

2,2

}
∣∣C2,2

∣∣2
)

+ O(ε3), (A 57)

with an asterisk representing the complex conjugate. We can see that the O(ε2) correction
grows as a function of the fast time scale, t0, as well as the slow time scale, t′2 (through its
A1(t2) dependence).

Likewise, the HP β is the complex angle (3.54) of (A 56)

β := tan−1

(
Im
{
C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2

}
Re
{
C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2

}
)

+ O(ε3)

≈ β0 + ε2|A1|2 exp(2 Im{ω0}t0)
Re
{
C2,2
}

Im
{
C4,2
}− Im

{
C2,2
}

Re
{
C4,2
}

Re
{
C2,2
}2 + Im

{
C2,2
}2 + O(ε3),

(A 58)

with β0 given in (3.55) by

β0 = tan−1

⎛
⎜⎝ Im

{[
P̂2 − P̂1

](
1 + P̂∗

1

)}
∣∣∣1 + P̂1

∣∣∣2 tanh2(h)− Re
{[

P̂2 − P̂1

](
1 + P̂∗

1

)}
⎞
⎟⎠. (A 59)

Notice that β also has a weak time dependence appearing at O(ε2). Additionally, both β
and a2/(a2

1k) display a weak amplitude, ε|A1|, dependence. Finally, as given in (3.57) and
(3.58), the skewness S and asymmetry A of a wave are defined as

S := 〈η3〉
〈η2〉3/2

, (A 60)

A := 〈H{η}3〉
〈η2〉3/2

, (A 61)

with 〈·〉 the spatial average over one wavelength and H{·} the Hilbert transform (in x). In
§ 3, we only calculated the O(ε) contribution for brevity. Using the full solution (A 50) for
η would yield a solution accurate up to and including O(ε3) terms.
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A.4. Complex frequency
After deriving our solutions (A 51) and (A 52), it is useful to repackage them in a more
conventional notation. Therefore, we will gather the entire time dependence into a complex
phase Θ ∈ C, from which we can extract a complex, time-dependent frequency ω(t) ∈ C

giving both propagation and growth. From (A 19), we can write the entire t-dependence of
A1(t) as a complex phase

A1(t) = A′
1 exp

{
i
1
2

COMB3,1

Im
{
COMB3,1

} ln

[
1 − ε2

∣∣A′
1

∣∣2(exp(2 Im{ω0}t)− 1)

× Im
{
COMB3,1

}
Im{ω0}

]}
+ O(ε4). (A 62)

Therefore, the entire complex phase Θ of the first harmonic ηm=1 = A′
1 exp(iΘ) is

Θ := kx − ω0t + i
1
2

COMB3,1

Im
{
COMB3,1

} ln

[
1 − ε2

∣∣A′
1

∣∣2(exp(2 Im{ω0}t)− 1)

× Im
{
COMB3,1

}
Im{ω0}

]
+ O(ε4). (A 63)

Now, we define the full, complex frequency as

ω := −∂Θ
∂t

= ω0 + ε2
∣∣A′

1

∣∣2 exp(2 Im{ω0}t)COMB3,1 + O(ε4). (A 64)

Notice that the time dependence of ω is a manifestation of the (time-dependent) amplitude
dispersion of unforced Stokes waves. Then, the phase speed is the real part of ω,

c := Re{ω} = Re{ω0} + ε2
∣∣A′

1

∣∣2 exp(2 Im{ω0}t)Re
{
COMB3,1

}+ O(ε4), (A 65)

while the growth rate is the imaginary

γ := Im{ω} = Im{ω0} + ε2
∣∣A′

1

∣∣2 exp(2 Im{ω0}t) Im
{
COMB3,1

}+ O(ε4). (A 66)

It is natural to define the (dimensional) harmonic amplitudes an of (A 50) as containing
the growth time dependence

a1(t) := ∣∣η̂m=1

∣∣ = ε

∣∣A′
1

∣∣
k

exp(Im{Θ})+ O(ε5), (A 67)

a2(t) := ∣∣η̂m=2

∣∣ = ε2

∣∣A′
1

∣∣2
k

exp(2 Im{Θ})[1 + ε2|A1|2 exp(2 Im{ω0}t)
]+ O(ε5)

= ε2

∣∣A′
1

∣∣2
k

exp(2 Im{Θ})[1 + (a1k)2
]+ O(ε5), (A 68)
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where we made the approximation Im{ω0}t0 ≈ Im{Θ} in the final line. This leaves the
propagation time dependence given by the (real) phase

θ := Re{Θ} = kx −
∫

Re{ω} dt , (A 69)

such that the dimensional solution is

kη = (a1k) exp(iθ)+ (a1k)2
a2

a2
1k

exp(i(2θ + β))+ . . . . (A 70)

A.5. Miles profile
The Miles surface pressure defined in (2.9) has a Fourier representation, similar to (2.15)
and (2.16), given by

p̂M,m(t) = kPM exp(i sgn(m)ψP)η̂m(t), (A 71)

or P̂m = PM exp(i sgn(m)ψP), with PM the constant P for the Miles profile. For this profile,
the leading-order correction to the first harmonic C2,2 (3.48) reduces to the unforced Stokes
result (P̂1 = P̂2 = 0). Indeed, the leading-order HP β0 (3.55) vanishes for any pressure
profile of the form P̂2 = α + P̂1(1 + α), with α ∈ R (Miles is α = 0). Thus, the Miles
pressure profile has no impact on leading-order wave shape. Note that, for the Miles profile,
the higher-order correction C4,2 differs from the unforced case, giving a small O(ε2)
change to the shape parameters. Given that leading-order wind-induced shape changes
have been measured (e.g. Leykin et al. 1995; Feddersen & Veron 2005), the Miles profile
appears to be an inappropriate pressure profile.

A.6. Weaker wind forcing
In appendices A.1 and A.2 we performed the derivation up to O(ε4) with a strong pressure
forcing Pk/(ρwg) = O(1). This yielded expressions (A 57), (A 58) and (A 64) for a2/(a2

1k)
β, and ω ∈ C accurate to O(ε3). However, it is occasionally useful to consider weaker
winds, such as Pk/(ρwg) = O(ε) or O(ε2), as discussed in § 2.4. These results can be
generated by substituting P → εP or P → ε2P, respectively, into (A 57), (A 58) and (A 64)
and dropping terms O(ε3) or higher. We have also performed the derivation assuming
that Pk/(ρwg) = O(ε2) (not included here), which gives identical results to O(ε2) to the
more general solution (§ 3 and appendix A) after converting back to the true time t. This
further confirms the wide parameter range of the Pk/(ρwg) = O(1) derivation (§ 3 and
appendix A).
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